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Abstract 

 
In this paper, the stability of finite difference methods for time-dependent Schrodinger equation with 

Dirichlet boundary conditions on a staggered mesh was considered with explicit and implicit discretization. 

Using the matrix representation for the numerical algorithm, it is shown that for the explicit finite difference 

method, the solution is conditionally stable while it becomes unconditionally stable for implicit finite 

difference methods. A 1D Harmonic Oscillator problem shall be used to illustrate this behaviour. 

 

 
Keywords: Schrodinger equation; finite difference; discretization; dirichlet boundary conditions; crank-

nicolson. 

 

1 Introduction 
 

The stability of a differential equation refers to the behaviour of its solutions under small perturbations or 

changes in the initial conditions. In other words, it describes how sensitive the solution of a differential equation 

is to changes in the initial conditions or parameters. A differential equation is said to be stable if small 

perturbations in the initial conditions or parameters lead to correspondingly small changes in the solution over 
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time. On the other hand, if small perturbations in the initial conditions or parameters lead to large changes in the 

solution over time, the differential equation is said to be unstable. The stability of a differential equation is 

important because it determines the long-term behaviour of its solutions. In particular, a stable differential 

equation will have solutions that approach a steady-state or equilibrium solution over time, while an unstable 

differential equation will have solutions that diverge or oscillate indefinitely [1].  

 

The study of stability in differential equations is a fundamental and ongoing area of research in mathematics and 

applied sciences, with numerous applications and it provides a framework for analyzing the behaviour of 

dynamical systems and predicting their long-term behaviour. There are many different concepts and techniques 

that have been developed to analyze the stability of differential equations, depending on the specific properties 

of the equations and the types of solutions of interest.  

 

1.1 The schrodinger equation 
 

The Schrodinger equation, often called the Schrodinger wave equation is a fundamental equation in quantum 

mechanics that describes the time evolution of a quantum state [2], which is represented by a wave function. It 

was developed by the Austrian Physicist Erwin Schrodinger [3] and it is the fundamental equation of Physics for 

describing quantum mechanical behaviour. In pure mathematics, the Schrodinger equation and its variants are 

one of the fundamental equations studied in the field of partial differential equations, and has many important 

applications in geometry, spectral and scattering theory, and integral systems [4]; and quantum mechanics, 

including the calculation of energy levels and transition probabilities of atoms and molecules, the description of 

quantum tunnelling and scattering, and the study of the behaviour of condensed matter systems. 

 

The Schrödinger equation is a probabilistic equation, meaning that it gives the probability distribution of the 

location of a particle in space at any given time. The wave function itself is a complex-valued function that 

encodes the amplitude and phase of the particle's probability wave. The absolute square of the wave function 

gives the probability density of finding the particle at a given location. 

 

There are basically two variants of Schrodinger’s equation – time-dependent Schrodinger equation (TDSE) and 

time-independent Schrodinger equation respectively: 

 

 
  

  

   

            
  

  
                                                                          (1) 

 

 
  

  

      

                                                (2) 

 

Where   =                           (reduced Planck constant),                    and      

                            . 

 

1.2 Finite difference method 
 

The finite difference method is a numerical technique for solving differential equations by approximating their 

derivatives using finite differences. It involves discretizing the domain of the differential equation into a grid of 

points and approximating the derivatives of the solution at each point using the values of the solution at 

neighbouring points [5]. The basic idea of the finite difference method is to approximate the derivatives of the 

solution using finite difference quotients, which involve differences of the solution values at nearby points. It is 

based on subdividing the domain of the problem by introducing a mesh of discrete points for each of the 

independent variables. The resulting system of algebraic equations is then solved by appropriate method. 

  

Finite difference is powerful and one of the most widespread numerical techniques for solving PDE particularly 

in situations where analytical solutions are difficult or impossible to obtain. It is however important to 

emphasize that high-order finite difference methods have good properties for solving wave problems efficiently. 

Nevertheless, for time-dependent wave dominated problems that include boundary conditions, it has historically 

been challenging to construct stable discretizations with these types of methods [6]. 

 

Finite difference method has applications in many fields, including physics, engineering, finance, and biology. 
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1.3 Discretization of finite differences 
 

We shall assume a hypothetical case of finite domain with a time coordinate  , and a spatial coordinate  . Thus, 

a function is only defined for the values of    and   that corresponds to points in the mesh such that for a given 

continuous function  , there are available values of it at        , denoted by     . So, for uniformly discretised 

domain, we have: 

 

              &                                                                        (3) 

 

Constructing the difference operators for the derivatives     , we have: 

 

 Forward and backward difference respectively as: 

 

        
             

  
                    

             

  
                          (4) 

 

 Centre finite difference approximation: 

 

        
               

   
                                                  (5) 

 

2 The Quantum Harmonic Oscillator Problem 
 

The quantum harmonic oscillator problem is a fundamental problem in quantum mechanics that describes the 

behaviour of a particle in a harmonic oscillator potential. It is a model system that is used to understand the 

quantum mechanical properties of a wide range of physical systems, including atoms, molecules, and solids. The 

quantum harmonic oscillator problem is of great importance in quantum mechanics, as it provides a simple 

model for understanding the behaviour of many physical systems. The problem has many applications in 

chemistry, physics, and engineering, including the study of molecular vibrations, the behaviour of electrons in 

solids, and the properties of lasers and other optical devices. 

 

The quantum harmonic oscillator is one of the foundational problems in quantum mechanics and can be applied 

in the understanding of complex modes of vibration in larger molecules, the theory of heat capacity, the motion 

of atoms in a solid lattice, etc. [7].  

 

In this example, the time-dependent Schrodinger equation gives us the understanding on how the initial 

information about the particle in the quantum harmonic system behaves and changes over time. The one-

dimensional (ID) Schrodinger wave equation for the Harmonic Oscillator can be put in the following form: 
 

 
  

  

        

                 
       

  
                                          (6) 

       

Subject to the following conditions: 
 

                                                
 

 The equation (6) describes the particle  , in a quantum harmonic oscillator motion with mass,   in the 

interval       and     under the influence of the potential,  
 

     
 

 
      

 

 
     

 

 Discretizing equation (6), by replacing the space derivative by the difference technique at     time step 

and the time derivative by a forward difference, gives a linear system of equations for the time given as: 

  
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Where      
 

 
    (  is a constant - the wave number) and we shall assume        , so that we 

have equation (8) as follows:  
 

 

 
                

 

                         
 

 
  

                                   (8) 

 

 .e., 
 

              
  

                          
 

 
   

                                  (9) 

 

Where      , and              corresponding to the mesh points of T. While the mesh points of   is 

given as,             .  
  

Thus, equation (9) can be re-written as: 
 

             
  

                           
  

 
  

        

 

Let   
  

   , so that: 

 

                               
  

 
  

            

                          
  

 
  

                

                                                                                                               (10) 

 

where        
  

 
  

    

 

The graphs below display the stability of the solution at various mesh intervals: 
 

2.1 Crank-nicolson FD approximation for the ID harmonic oscillator 
 

The Crank-Nicolson method provides an implicit scheme that is second-order accurate in both space and time 

[8]. Again, we consider the same time-dependent equation of equation (6), given below: 
 

 
  

  

        

                 
       

  
                                       

 

 
 

Fig. 1. Real and imaginary part of the central difference numerical solution to equation (6) with        

              at                      where        &       
 

Again, we assume,      , then we have: 
 

 
 

 

        

    
 

 
           

       

  
                                                            (11) 
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Where      
 

 
   . Also, taking    , yields: 

 

 
 

 

        

    
 

 
          

       

  
                                                           (12) 

 

 
 

Fig. 2. Real and imaginary part of the central difference numerical solution to equation (3.55) with 

                    at          
   

 
            , where        &       

 

 
 

Fig. 3. Real and imaginary part of the central difference numerical solution to equation (6) with    

                 at          
   

  
            , where        &       

 

 
 

Fig. 4. Real and imaginary part of the central difference numerical solution to equation (6) with    

                  at          
   

  
             , where       0 &       
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From equation (12), using the average centred difference at the forward time step    , and the current time 

step   , with     , and     , gives: 
 

 

 
                

 

 
 

 

   
                                                      

           (13) 

 

i.e., 
 

                 
 

                                                     
 

 
  

        (14) 

 

Let   
  

   , so that: 

 

               
 

 
                                                

  

 
  

           (15) 

 

i.e., 
 

 
 

 
                     

 

 
         

 

 
                 

 

 
       

  

 
              (16) 

 

3  Order, Accuracy and Stability Analysis of Finite Difference Method 
 

The truncation error and stability issues affect the choice of mesh staggering for most numerical methods and 

the finite difference method is not an exception. 
 

 
 

Fig. 5. Real and imaginary part of the Crank-Nicolson finite difference numerical solution of equation 

(16) with          at                      and       ;       
 

 
 

Fig. 6. Real and imaginary part of the Crank-Nicolson finite difference numerical solution of equation 

(16) with          at                     and       ;       
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Fig. 7. Real and imaginary part of the Crank-Nicolson finite difference numerical solution of equation 

(16) with           at                      and        ;      
 

3.1 Explicit method 
 

Consider the finite difference solution for the one-dimensional Schrodinger equation: 
 

 
  

  

        

                 
       

  
                 

 

Assuming,      , then we have: 
 

 
 

 

        

    
 

 
          

       

  
  

 

or 
 

 
 

 
    

 

 
                                                                    (17) 

 

Subject to the conditions: 
 

           , for         
 

            ,              for        
 

Discretizing, we have: 
 

    
 

 
                                                                          (18) 

 

and 
 

 
 

 
     

 

                                                           (19) 

 

where      , and     . 
 

Combining, we have: 
 

 

 
               

 

                                                          (20) 

 

or 
 

            
  

                                                                         (21) 
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Equation (21) can be simplified by introducing the parameter,    
  

    and solving for       , we have: 

 

                                                                             (22) 

 

Note that the   and   meshes must be chosen so that            in order to ensure stability. 

 

Thus, a numerical method is stable if errors that may be present at one stage of the computation do not grow as 

the process proceeds. In other words, the errors made at one stage of the computation do not cause increasingly 

large errors as the computations are continued, but rather will eventually damp out [8]. 

 

3.2 Implicit method 
 

Consider again, the Schrodinger equation of equation (17): 

 

 
 

 
                             

 

Discretizing, we have: 

 
 

 
               

 

                                   

 

which gives: 

 

      
  

                                            

           
  

                                             

                                                                                    (23) 

 

3.3 Truncation error 
 

These are measures of the error by which the analytical solution of a differential equation does not satisfy the 

difference equation at the grid points and are obtained by substituting the analytical solution of the continuous 

problem into the numerical scheme. A necessary condition for the convergence of the numerical solutions to the 

continuous solution is that the local truncation error tends to zero as the mesh size goes to zero. In this case the 

method is said to be consistent. 

 

The explicit and implicit finite difference representation of the partial derivatives in the Schrodinger equation 

have the same order except that the second derivative for the implicit method is at step      rather than at step 

  for the explicit method. Thus, we have: 

 

           
 

 
                                                                    (24) 

 

and 

 
 

 
           

 

                                                        (25) 

 

Substituting into the Schrodinger equation and simplifying, we have the truncation error,       for the explicit 

method to be: 

 

                                                                        (26) 

 

While, for the implicit scheme/method, the truncation error is given by:  

 

                                                                        (27) 
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It follows that the truncation error for the explicit method is the same as for the implicit method and it is given 

as        . However, for Crank-Nicolson method, the truncation error,      is slightly less and is given by: 

 
           

  
 

 

 
  

      
                                                                           (28) 

 

i.e., 

 
                                                                                          (29) 

 

4 Stability Analysis 
 

There are two primary considerations in choosing the mesh sizes,   and  , for a finite difference solution of a 

PDE. One issue is the effect of the mesh sizes on the order of the truncation error for the method, the other 

important issue is the stability of the method.  

 

The primary difficulty with the explicit method is the stability condition, which requires that: 

 

  
  

    
 

 
  

 

A numerical method is said to be stable if errors that may be present at one stage of the computation do not 

grow as the process proceeds. We consider the explicit form as given in equation (22): 

 

                                        

 

Hence, expressing in matrix form, we have: 

 

 
 
 
 
 
 
 
                                                            

                                                            

 

                            

                                                               

                                                           

                                                                       
 
 
 
 
 
 
 

  

 
 
 
 
 
 
 

      

      
 

      
 

        

       
 
 
 
 
 
 

 

 
 
 
 
 
 
 

        

        
 

        
 

          

         
 
 
 
 
 
 

                     (30) 

 

Observe that the matrix is tridiagonal and diagonally dominant. We shall use the Fourier method to check if the 

method is stable [9]. Assume that the numerical method admits a solution of the form: 

 

                                                                                     (31) 

 

where   is the wave number and      . 

 

Define: 

 

     
        

      
  

 

where      is the growth factor [10]. The von Neumann stability condition is given by: 

 

                               
 

where     . 
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It can be shown that the explicit method is stable if      , which implies conditional stability. Thus, 

substituting equation (31) into equation (22), we get: 

 

                                                                               (32) 

 

i.e., 

 
                                                                                            (33) 

 

or, 

 
        

      
                                                                                       (34) 

 

Thus, the von Neumann stability condition implies that: 

 

                                              

                                                     

                                                  
  

 
       

                                           
  

 
      

                                     
 

      
  

 
 
,  for                                       (35) 

 

It follows that        . 

 

Thus, the explicit finite difference method is stable if: 

 
  

    
 

 
                       

 

So that if   should be reduced by  , then   must be reduced by 
 

 
 in order to achieve stability.  

 

Therefore, for the Schrodinger equation,  

 
 

 
                     

 

the explicit method requires that: 

 
 

                                    

 

4.1 Implicit method 
 

The finite-difference representations of the partial derivatives in the Schrodinger equation is as given for the 

explicit method, except that the spatial derivative is approximated at step    , instead of step  . Thus, we have: 

 

           
 

 
                    

 

and 
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Substituting into the PDE and simplifying, we find that the truncation error for the implicit is the same as for the 

explicit method, which gives,        . Now, to show that the implicit method is unconditionally stable, let us 

consider the implicit solution as contained in equation (23): 

 

                                             

 

The matrix representation of the equation is as given below: 

 

 
 
 
 
 
 
 
                                                        

                                                        

 

                            

                                                               

                                                   

                                                                      
 
 
 
 
 
 
 

  

 
 
 
 
 
 
 

        

        
 

        
 

          

         
 
 
 
 
 
 

 

 
 
 
 
 
 
 

      

      
 

      
 

        

       
 
 
 
 
 
 

             (36) 

 

The matrix is tridiagonal and diagonally dominant. As applicable for the explicit method, w shall also use the 

Fourier method to check if the method is unconditionally stable. So, assume that the numerical method admits a 

solution of the form: 

 

              , where   is the wave number and      , and define:      
       

     
. 

 

The von Neumann stability condition is given by: 

 

        ,           where        and        

 

It can be shown that the implicit finite difference method is unconditionally stable if         . Thus, 

substituting equation (31) into equation (23), we get: 

 

                                                                    

 

which yields, 

 
                                                                           (37) 

 

i.e., 
                                                                            (38) 

 

or, 

 
                                                 

                                           
 

or, 

 

      
 

              
                  

 

             
                       (39) 

 

i.e., 

 

          

 

Thus, there is no restriction for  , hence the implicit finite difference method is unconditionally stable. 
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5 Crank-Nicolson Method 
 

Crank-Nicolson method is an implicit method. The most important advantage of this method is that it is stable 

for any values of  , however, smaller values usually give better accuracy [11]. It is observed that when the ratio 

of 
  

    is greater than 0.5, the explicit method is found to be unstable. However, the implicit methods, including 

Crank-Nicolson do not have such a limitation as contained in our analysis above. The truncation error of Crank-

Nicolson is slightly less than the general implicit method as contained in equation (29), given as         . 
 

Using the average of the centred difference at the forward time step     and the time step   gives: 
 

            
  

      
                                                                (40) 

 

Let   
  

   ; then we have: 

 

            
 

 
                                                                   (41) 

 

So, we have: 
 

 
 

 
                     

 

 
         

 

 
                 

 

 
                      (42) 

 

Now, to show that the implicit method is unconditionally stable, let us consider the matrix-vector representation 

of the process as given below: 
 

 
 
 
 
 
 
 
 
 
 
            

 

 
                                                   

   
 

 
                   

 

 
                                          

 
                            

                                                               

                                   
 

 
                       

 

 
  

                                                          
 

 
                  

 
 
 
 
 
 
 
 
 
 

  

 
 
 
 
 
 
 
       
       

 
       

 
         
        

 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 
            

 

 
                                                   

   
 

 
                   

 

 
                                           

 

                            

                                                               

                                      
 

 
                     

 

 
  

                                                          
 

 
                  

 
 
 
 
 
 
 
 
 

  

 
 
 
 
 
 
 
         
         

 
         

 
           
          

 
 
 
 
 
 

             (43) 

 

The matrix is tridiagonal and diagonally dominant. As obtained above when considering the general implicit 

method, we shall use the Fourier method to check if the method is unconditionally stable.  

The von Neumann stability condition is given by: 
 

        ,        
 

where      and     . 
 

It can be shown that the Crank-Nicolson finite difference method is unconditionally stable if  
 

          



 

 
 

 

Ohwadua; J. Adv. Math. Com. Sci., vol. 38, no. 7, pp. 167-180, 2023; Article no.JAMCS.100057 
 

 

 
179 

 

Substituting, we have: 

 

 
 

 
                                   

 

 
                    

 

 
 

 
                               

 

 
                                   (44) 

 

i.e., 

 

 
 

 
                             

 

 
                

 
 

 
                     

 

 
                            (45) 

 

   

 

     
                     

                     
  

              

              
 

              

              
            (46) 

 

Thus,          for all  , and hence both general implicit and Crank-Nicolson finite difference methods have 

no restriction for   and are unconditionally stable. However, the truncation error for the Crank-Nicolson method 

is         , while that of the general implicit method is        . 

 

6 Conclusion 
 

It is observed that from equation (33b) that by using von Neumann stability condition , the explicit finite 

difference method is found to be conditionally stable if only r      and thus, if   should be reduced by  , then 

  must be reduced by 
 

 
 in order to achieve stability. Therefore, for the ID Schrodinger equation for the quantum 

harmonic equation: 
 

 

 
                          

 

Thus, the explicit method requires that: 
 

 

                                         
 

On the other hand, the implicit and Crank-Nicolson finite difference methods for the ID Schrodinger equation 

are found to be unconditionally Stable using the von Neumann stability condition as          for all  ,  

from equations (39) and (46). 
 

Considering Figs. 1,2 and 4 above, we observe that r = 5.0,1.0 and 5.0 respectively, and thus the effect on the 

graphs are obvious while, in Fig. 3,       which satisfies the stability condition of r       On the other hand, 

we observe that irrespective of the values of   in Figs. 5,6 and 7 which are 0.5, 5.0 and 50.0 respectively, all the 

graphs appears consistent, which concludes that the implicit and Crank-Nicolson finite difference methods have 

no restriction for r and are therefore unconditionally stable. However, the Crank-Nicolson has a better truncation 

error of          while the general implicit method has a truncation error of        . 
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