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Abstract                                                                                                                    

We exploit the dynamics of Lassa fever model with sex structure of the human population with the rat 

population. The objectives of the research were to: (i) solve for the equilibrium point of the disease free of 

the model; (ii) obtain basic reproduction number 0R , for the model; (iii) investigate local and global 

stability of the model; and (iv) analyze the sensitivity of parameters of the model. It was found that the 

disease free equilibrium point was locally asymptotically stable whenever the basic reproduction number (

oR ) is less than one and unstable otherwise. The global stability of the model at disease free equilibrium 

was found. The analysis of the contribution of each parameter was performed using sensitivity analysis. All 

positive value parameters are in direct proportionality with the basic reproduction number oR  and all 

negative value parameters are inversely proportional to the basic reproduction number. Thus, increase in 

the values of all parameters with positive sensitivity value would increase oR . Conversely, increase in the 

value of all parameters with negative sensitivity value would decrease oR .  

Keywords: Epidemiology, stability analysis, differential equation, theorem. 

INTRODUCTION 

The antiviral drug ribavirin seems to be an effective treatment for Lassa fever if given early on in 

the course of clinical illness. There is no evidence to support the role of ribavirin as post-exposure 

prophylactic treatment for Lassa fever WHO (2017)[9]. Early detection of disease will lessen the 

danger of disease endemic related to transmission among persons, particularly among relatives and 

ISSN 2688-8300 (Print) ISSN 2644-3368 (Online) JMSCM, Vol.2, No.2, January 2021

252 Journal of Mathematical Sciences & Computational Mathematics



medical personnel. Lassa infection has been detached from semen a month and a half after intense 

ailment; in this manner the infection can be contracted with sexual accomplices by recuperating 

individuals Tara (2004)[8]. Asogun et al. (2016)[2] researched the direct cost of treatment of Lassa 

fever for an average Nigerian, which is expensive despite subsidy in medications and 

investigations by the government. Therefore efforts are geared towards reducing the economic 

burden of Lassa fever on patients and their families by advocating sensitisation and early treatment 

model. 

Onuorah et al. (2016)[7] formulated a Lassa fever model with sex structure of both the 

human population and the rat population. In their model, human population were categorized 

according to their sexes as males and females, then they are subdivided into compartments as 

Susceptible and Infected males and female respectively. A new approach is proposed owning to 

the fact that Ribavirin is efficient in exposure prophylactic treatment. Incorporating the Exposed 

classes for both the male and female compartments in Onuorah et al. (2016)[7]. Below are some 

assumptions of the model considered.   

    1.  The Exposed/Latent compartment can cause infections.  

    2.  It is assumed that transmission by homosexualism (gay or lesbianism) is ignored.  

    3.  Human population is divided into genders that are male and female.  

    4.  It is assumed that treatments are more effective at the Asymptomatic/Exposed class.  

    5.  It is assumed that Lassa fever occurs at all age groups   

 

 

MATHEMATICAL FORMULATION OF THE PROBLEM 

Based on the above assumptions, the system of nonlinear differential equations are formed, see 

detail information in tables 1 and 2  
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 where  

 

 2132122111 = RSISESG    (2) 

  

 2261251242 = RSISESG    (3) 

 and  

 27= R  (4) 

 

 0(0)0,(0)0,(0)0,(0)0,(0)0,(0)0,(0)0,(0) 22211121  IESIESRR  are initial 

condition of the populations. 

 

Variables and Parameter Description 

 

Below tables show the various state variables and parameters of the Model with meaning   
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Table  1:  Variable description of the Model 

 State Variable   Description  

)(1 tR    Dormant Rat compartment  

)(2 tR    Active Rat compartment  

)(1 tS    Susceptible male’s compartment  

)(1 tE    Exposed/Asymptomatic male’s compartment  

)(1 tI    Compartment of the infected male  

)(2 tS    Compartment of the Susceptible female  

)(2 tE    Exposed/Asymptomatic female’s compartment  

)(2 tI    Infected female’s compartment 

 

  

 

Table  2: Parameter description of the model 

  

    Parameter   Description  

h    The rate of recruitment of human males either by birth or immigrant.  

1    The proportion of uninformed human males to infected class.  

21 ,    The recovery rates of patients from the Exposed classes. 

r    The rate of recruitment of Rat to the dormant compartment. 

1    Force of infections between 21ES .  

r , h    Natural deaths of the Rats and Human populations respectively.  
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2    The proportion of uninformed human females to the infected class.  

)(1 h    The rate of recruitment of female either by birth or immigrant.  

7    Force of infection between Dormant Rat and Active Rat population.  

1    Death rate of Rats as result of the use of rat poisoning. 

2    Death rate of Humans due to infection.  

2   Force of infection between 21IS . 

3  Force of infection between 21RS .  

4   Force of infection between 12ES .  

5   Force of infection between 12IS .  

6   Force of infection between 22RS . 

 

METHOD OF SOLUTION 

The Reproduction Number 0R  of the Model 

The nature of behaviour of the model is known in the computation of a reproduction number. One 

of the thresholds that shows disease persistence or dying-off in the given community is the 

reproduction number, defined as the total number of secondary infectives which one infective 

would produce in its entire life in population that are completely susceptible. The possibility of a 

future out-break is known by the value of the basic reproductive number oR . Driessche and 

Wathmough (2002),  developed the next generation approach to fine the basic reproduction 

number oR  of Epidemiological models. 

  Lemma  

 If ox  is a Disease Free Equilibrium (DFE) of the model above satisfying:   

• 0x , then 0,,  VVFi  for ni ,1,2,=    

    • If 0=ix  then 0=iV  (Nobody leaves the compartment)  
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    • mii >0,=F  ( m  is the number of infective classes )  

    • If sXx , then 0=iF  and 0=iV  for all mi ,1,2,=    

    • If )(xF  is the set to zero then all the eigenvalues of )(xDF  have negative real parts.  

 then,the negative derivative )( oxDF  and )( oxDV  are partitioned as  
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 with mn1 . F  is non-negative and V  is non-singular matrix. 

Following Diekmann et al. (1990)[5], the basic reproduction number 0R   

 )(= 1FVRo   (7) 

 Where )(r  denotes the spectral radius or largest eigenvalues. 

From the governing equation, the following are obtained 

The Disease Free Equilibrium (DFE) 
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 where ,= 11  rQ  112 =  hQ , 23 =  hQ  and 224 =  hQ  Then  
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 By Driessche and Wathmough (2002)[6], the Basic reproduction number for Vector-host model 

can be written in the form  

 21= RRRo  (15) 
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Local Stability Analysis of the Model at Disease Free Equilibrium DFE 

 

 Theorem 1 

The disease free equilibrium of the model is stable if 1<oR  and unstable otherwise. 

Proof 

The Jacobian matrix of the governing model equations evaluated at disease free 

equilibrium given as  
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Using the trace-determinant approach, the disease free equilibrium is locally stable if the 

trace of oJ  is less than zero and the determinant of oJ  is greater than zero. 
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As seen from (17), the trace of 0<oJ  if  
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 Thus, the disease free equilibrium is locally asymptotically stable if 1<oR  (that is 1<1R  and 

1<2R ).  

Global Stability of the Model at Disease Free Equilibrium 

The method outlined in Berhe H.W. and D.M. (2019)[3] shall be used to investigate the global 

asymptotic stability of the disease free equilibrium of the model. This method entails that, the 

Model equations be written as  

 ),(=)( YXFtX   (22) 

  

 0=,0)(),,(=)( XGYXGtY   (23) 

 where nRX   denotes the number of non infectious individuals and nRY   denotes the number 

of infected individual. Let ,0)(= *XZo  denote the disease free equilibrium of the Model, then oZ  

is globally asymptotically stable if the following conditions are satisfied. 

(H1)  For  

 ),(=)( YXFtX   (24) 
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 *X  is globally asymptotically stable. 

(H2)  0),(ˆ=),(  YXGAIYXG                                                                                              (25) 

 for (X,Y) A  

where ,0)(ˆ= *XGDA y  is an M-matrix. 

Theorem 2 

The disease free equilibrium ,0)(= *XZo  is globally asymptotically stable provided 
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 thus, 0),(ˆ YXG . This satisfies condition (H2), hence 

the disease free equilibrium is globally asymptotically stable. 

Sensitivity Analysis of the Model 

Relative importance of key parameters in Mathematical modeling are examined via the sensitivity 

analysis. Here, various parameters responsible for the disease transmission in two Models are 

analyzed. A recent example is the work of Onuorah et al. (2016)[7] and Abdullahi et al. (2015)[1]. 

The sensitivity quantity oR  with respect to the various parameter is given as  
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 Where jk  stands for the various parameters of the Models. The tables below show sensitivity 

analysis of parameters of the model.   

Table  3: Sensitivity Analysis of the Model  

 Parameter   Value References Sensitivity 

r  0.0020 Assumed +0.5000 

h  0.0380        CIA (2015)[4] 

 

+0.0001 

1  0.4200    Onuorah et al. (2016)[7] +0.2460 

2   0.5000    Onuorah et al. (2016)[7] +0.0003 

3  0.3200     Onuorah et al. (2016)[7] +0.0001 

4  0.5000     Onuorah et al. (2016)[7] +0.0049 

5   0.5000     Onuorah et al. (2016)[7] +0.2451 

6  0.5000     Onuorah et al. (2016)[7] +0.0000 

7  0.0320     Onuorah et al. (2016)[7] +0.5000 

1   0.0010     Onuorah et al. (2016)[7] -0.0033 

2   0.0010     Onuorah et al. (2016)[7] +0.2144 

1   0.3000     Onuorah et al. (2016)[7] +0.2459 

2  0.2000    Onuorah et al. (2016)[7] -0.4902 

h  0.0030    Onuorah et al. (2016)[7] +0.0353 

r  0.4500    Onuorah et al. (2016)[7] -1.4966 
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Interpretation of Sensitivity Index for oR  

 

 In the above table, all positive value parameters are in directly proportional to the basic 

reproduction number oR  and all negative value parameter are inversely proportional to the basic 

reproduction number. Increase in the values of all parameters with positive sensitivity index would 

increase oR  while increase in the values of all parameters with negative sensitivity index would 

decrease oR  

CONCLUSION 

 

This research work focused on the dynamics of lassa fever in Nigeria. A deterministic model of a 

system of nonlinear differential equations formulated was analysed. Existence of Disease Free 

Equilibrium (DFE) of model was found. The basic reproduction number oR  was calculated for the 

model to establish the important threshold parameter that either culminates in disease spread or its 

removal. Local and global stabilities at Disease Free Equilibrium were established. Sensitivity 

analysis of parameters of the Model revealed that reduction of parameter values like "forces of 

infection" lead to reduction of basic reproduction number while increase in parameter values like 

recovery rates result to reduction of the basic reproduction number. 
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