

Copyright © 2017 Faki Agebee Silas et al. This is an open-access article

distributed under the terms of the Creative Commons Attribution License 4.0,

which permits unrestricted use, distribution, and reproduction in any medium,

provided the original author and source are credited.

Circulation in Computer Science

Vol.2, No.6, pp: (20-24), July 2017

https://doi.org/10.22632/ccs-2017-252-32

Hybridization of Class Responsibility Collaborators
Model (HCRCM) with Function Point to enhance Project

Estimation Cost in Agile Software Development

Faki Agebee Silas
Computer Science Department,

University of Ilorin,
Ilorin-Nigeria

Musa Yusuf
Computer Science Department

Bingham University
Karu, Nasarawa State

Anah Hassan Bijik
Computer Science Department

Bingham University
Karu Nasarawa State

ABSTRACT
Estimating software cost in an agile system in terms of effort
is very challenging. This is because the traditional models of
software cost estimation do not completely fit in the agile
development process. This paper presents a methodology to
enhance the cost of project estimation in agile development.
The hybridization adopts Class Responsibility Collaborators
models with function point thereby boosting the agile
software development estimation process. The study found
out that adopting the Hybridized Class Responsibility
Collaborator with function point has great improvement on
cost estimation in agile software development.

Keywords
Agile development, Class Responsibility Collaborators,
Function points, Line of codes, Scrum, Software estimation
models.

1. INTRODUCTION
Software Cost estimation is a process whereby amount of
effort needed to build a software system is estimated. This
process is important because it gives a blueprint of the amount
of effort and cost of building software. It also determines in
monetary terms the cost of software project in respect to the
time, effort and resources that are required to build it. Though,
software estimation in most cases focus on size measure,
there exist other useful measurable metrics like estimating
progress made, estimation changes in development, estimating
the level of risk due to changes and the value earned at a
particular developmental stage [1].

 Estimation of software in terms of size is widely done by
using either line of code (LOC) or function point (FP). Both
LOC and FP measure size of software but not actually the
same measurement. LOC focus on size of system built which
has much emphasis on technology employ in the building,
design process and coding style. FP measures deliverable
function independent of technology being used in the
development process with focus on counting input, outputs,
external interface, files and inquiries.

There are several models and techniques of software
development like water fall, Spiral, incremental and agile
model. Among all, agile model has gain ground recently due
to its flexibility, evolutionary and highly collaborative, and
balanced it create in effort and development process [2] and
reduction in project failures because of faster development
cycles that deliver functioning software sooner than other
models. Agile software model is like a toolbox, a lazy worker
with the best tools remains a lazy man, because of the

assertion, not all projects that adopt agile model do succeed
[3]. Among the advantages agile models offers, there still no
standard acceptable method on how cost should be estimated
even to agile purist [4]. With the growing popularity of object
oriented programming languages in software development, it
is becoming more difficult to estimate software cost in
nontraditional development models like agile development
[5]. This is due to the fact to there exist variation of coding
syntax, semantics and style involved in object oriented
languages. One language may correctly code a function in
fewer lines while another does same task in more lines of
code.

This study therefor, improves on cost estimation of software
by using class collaboration estimation techniques with
function point. Moreover, this method works better because,
most programming languages now are object oriented in
nature and function point builds on functionality which is
independents of programming languages.

2. REVIEW OF RELATED MODELS
2.1 General Overview of Estimation

Models
The successful completion of any software project depends on
proper estimation of cost required in development.
Unfortunately, there is no single standard accurate way to
exactly estimate software cost in an agile system [6].

Traditionally, there are approaches that help estimate software
cost like line of codes and function points in addition to other
point’s estimation techniques such as use case point, object
point, class point. At the initial stage of software
development, the expertise and skills of developers and
requirements are not clearly known, also due to constant
change in technology and the duration a software process
takes, it become unfamiliar to say which computers the
software will be implemented on. All these and many others
add to the fundamental issues that makes software cost
estimation very elusive [7].

Base on the fact that many authors classified cost estimation
method differently, cost estimation remain a top issues as it
was several years back [8]. Due to recent technology
advancement and improve programming languages, many
software estimation models abound. Irrespective of software
estimation model, they are broadly classified as algorithmic
and non-algorithmic [9]. Making use of either algorithmic or
non-algorithmic or both is the prerogative of the developing
team which is hinge on expertise, problem at hand and
requirement understanding.

Circulation in Computer Science, Vol.2, No.6, pp: (20-24), July 2017
www.ccsarchive.org

21

2.2 Algorithmic Software Estimation
Models

Algorithmic cost estimation basically makes use of
mathematical formulas [10], which leads to some form of
equation(s) which are used for estimations.

A general form of algorithmic model could be --- (1)

Where x1, x2, x3 . . . xn is the vector of cost factors.

 Some of the cost factors could be computer, personal, project
or product factors. In practice, setting quantities for the factors
is a herculean task to a point that some developers decide to
ignore them in some project [11].

Most Algorithmic models takes care of cost based on types of
software, size of project, software team, software attributes
and the process followed to attain estimation. Line of codes
(LOC) estimation model comes in to play when estimation in
size of software is of interest [12]. With the fact that LOC are
difficult to implement in the early life of a project before
design is made and is heavily influence by choice of
programming language, it still remains a foundation and
simplest estimation metrics. It has the ability of decent
applications if the lines counted are define to mean logical
lines rather than irrelevant lines [13]. According to [2], line
of Codes is the simplest method of estimating size and effort
in software projects. This model measures software by
number of relevant line. Due to the physical nature of lines of
codes, it is possible for manual counting to be eliminated by
automating the counting system. Because lines of code can be
seen and the effect easily visualized, it serve as metric for
measuring software size.

Function point model was first presented by [11], [14] with
intent of covering wider range of businesses and applications.
Function points model uses estimates based on size of
requirements which is the functionality of the project. The
estimation is carried out using factors as user inputs, user
outputs, logic files, inquiries and interfaces. A complexity
degree of simple, medium and complex are attached with
weights values as 1, 2 and 3 respectively.

Constructive Cost Model (COCOMO) was proposed by
Boehm in 1981 [6]. This model uses equations and other
parameters which are data collected from previous project.
The latest version COCOMO II uses Bayesian statistical
analysis of empirical data on completed projects and expert
opinions. It has three estimation models (Application suite,
early design and final design architecture) to estimate effort
and cost. COCCMO models are comprehensive with large
numbers of parameter that can take a range of values [15].

Other algorithm models of software estimation are linear,
multiplicative, software evaluation and estimation of
resources-software estimation (SEER-REM), and Putman
model.

2.3 Non-Algorithmic Software Estimation
Models

Non-algorithmic models estimates software projects using
inferences, previous experience and analytical comparisons
[16]. In estimation by analogy model, completed project of
similar are used and estimation is done based on their cost.
This proceeds in steps as choosing an analogy, investigating
similarity and differences for previous projects, examining the
analogy and then provision of an estimation.

According to [17] expert estimation model involved getting
information from experts who have intensive experiences
from similar projects. This model involved consultation and is
applicable in situation where data and information are scanty
of past similar projects. Delphi is example of expert model.
In recent times, difficulty of estimation techniques and
availability of standard accurate result is leading many
developers to harnessed artificial intelligence prow in
software estimation hence the use of machine leaning model
[18]. Machine leaning model is best suited in projects where
high accuracy is required. This is achieved by training some
rules and running them over and over again in different
software cycles. Machine leaning model could be Artificial
Neural Network (ANN) which composed of layers called
neurons which are used in effort estimation, fuzzy model
which is applicable in situation where decision making is very
difficult and conditions are vague or feed forward neural
network model which disallowed self-loop or backward feeds.

2.4 Estimation of Software Cost in Agile
Environment

Software development is becoming highly a complex process
with too many variables and requirements having impact on
the system [19]. This leads to conflict when traditional
software estimations models are solely used in cost
estimations due to changing requirement as software process
progresses. Many authors are recently applying combinations
of models to estimates software cost. This is evident in [20] as
a total number of story points in combination with ANN is
implemented to estimate effort in an agile software product.

The accuracy of the estimation model is enhance by using
fireworks and Levenberq-Marquardt algorithms for weight
optimization and biased of the ANN. The uses of statistical
method are evident as [21] applied support vector regression
(SVR) model in software effort estimation. The model
implemented on NASA dataset software projects is found to
outperform radial basis neural networks and linear regression
models.

Agile development methodology could be Srcum, extreme
programming, crystal methods, adaptive software
development, agile modeling or feature driven developments.
Srcum in addition to possessing agile concepts and
methodologies has project management capabilities which
help developers find the next task in the next iteration. The
basic objective of scrum is its project simplification, easy
update documentation and higher team iteration over
exhaustive document [22].

Extreme programming places its focus on project
development rather than management [23]. Extreme
programming earlier was an adopted method for small high-
tech product companies but has now been used for companies
of different sizes [24]. It provides a simple and seemingly
naïve principles that are specific and guided values that work
at all phases of a software development cycle [25] It suffice to
say that different problem domain in software development
requires different agile methodologies. Some agile
methodologies focus on business problems why others are for
development. In the interest of the majority, achieving success
in project development within shortest possible time is of
utmost interest [26]

Circulation in Computer Science, Vol.2, No.6, pp: (20-24), July 2017
www.ccsarchive.org

22

3. METHODOLOGY
Class responsibility collaboration (CRC) is a great technique
that is used in designing software especially when used in
group/workshop environment.

Fig 1: Flowchart of class responsibility collaboration
model

After designing stage in software development is achieved,
the next stage is implementation which is most cases is
achieved by coding in a suitable choice language. In this
study, a simple walk through earlier design diagram like use
stories and use cases diagrams are used to identify the
candidates classes which are written on index cards. The
classes are further furnished with responsibilities and
collaborators. In order to improve on re-usability, some of the
classes are refactored by combining or splitting some classes
depending on whether they have same responsibilities or too
many responsibilities. This process is done iteratively and
incrementally with the software team evaluating and
improving on each iteration. By doing this, all services
(massages and functions) rendered by each class and its
collaboration are clearly visible leaving us with a clear and
distinct CRC card with functions for the software project.

Also this introduced and reorganized new classes, as the
iteration continues, existing classes will disappear, and new
ones emerges until user requirement are achieved. This
methodology is summarized in flowchart (see Fig 1). On
completion of the CRC, function point analysis model is then
used to estimate the cost based on functions in the CRC
diagrams. This model has the advantages of edging out similar
function(s) or function(s) that performs same or similar
activities among classes due to the fact that during factoring
of CRC classes, all association, extension and inclusion are all
taken care of. The cost of a function is seen here as an
independent entity with no same behavior as others found in
same or different classes. If the behavior is found to be same,
such function assumes cost only once to avoid duplication of
cost. The cost involve evaluating all individual functions f(x)
noting the same functions in same of other classes as S(n).

In eqn. (2), the cost of effort is defined to be the different in
cost of all functions and that of similar functions. The notion
of taking the difference here it to avoid double counting of
functions, This is evident in association, friendship, extension,
and reusable nature of object oriented programming languages
which are the most programming language in use recently.

4. FINDINGS
On application of this model to small in-house project, the
study found out that cost estimation is achieved closed to
target value. The cost value of the project keeps depreciating
to its true value after every iteration. This is because at the
end of every iteration, similar class collaborators (similar or
same functions) cancelled out there by reducing the number of
functions to be estimated. This is evident as shown in Figure 2
and 3. In Figure 2, a CRC SaleClerk began with eight
responsibilities and six collaborations.

Fig 2: SaleClerk CRC at first iteration

At the last iteration/increment stage which is preceded by
creating new classes, deleting unwanted or duplicate classes,
factoring classes, adding and subtracting similar
responsibilities and collaboration, the SaleClerk CRC ended
up with five responsibilities and three collaborations as shown
in Figure 3.

Fig 3: Saleclerk CRC at 4th iteration

The summery of the CRC diagrams modeled in the project
from first to the fourth iteration which was the last is shown in
Figure 4.

Make index cards Attach responsibility &
collaboration to class

Identify candidates’
classes

Refactor classes

Is class
distinct?

Identifies class function point

NO

YES

SaleClerk
Responsibilities Collaborations

empID: manager
empSal: Supervisor
embRank: Customer
clockInTime() Record
recordSale() time_Record
issueRecipts() CEO
recordComplints()
clockOutTime()

SaleClerk

Responsibilities Collaborations

empID: Supervisor
clockInTime() Customer

recordSale() time_Record

issueRecipts()

clockOutTime()

Circulation in Computer Science, Vol.2, No.6, pp: (20-24), July 2017
www.ccsarchive.org

23

Fig 2: diagram showing objects behavio at different iterations.

It can be observed from Figure 4 that at first iteration, 19
classes were identified with 43 class responsibility functions
and 41 collaboration functions. After series of class factoring,
removal of similar function and addition of new ones, the last
iteration which was the fourth produces 24 distinct important
classes with 18 collaboration functions and 39 class functions.
The reductions in function from first to last iteration causes a
downward shift in cost per function (because the function
became fewer) as priced by programmers thus lowering the
price of the software cost close to the projected value from
initial stage.

5. CONCLUSION
Agile development models in software have come to stay but
standardization is the issue leaving an open system that allows
different developers on ways to improve on cost estimation
using it. This study hybridized CRC with function point to
perform better cost estimation. The benefits here are that since
CRC is applicable on all software developing stages, it is
easier to applied coding from it and also, since association,
extension, reusability is prominent in CRC, double calculation
are eliminated.

This model also enables developers to evaluate the
requirement gatherings techniques use because of its ability to
track scope creep (growth or decline) of the project.

6. FURTHER STUDIES
The model discussed in this method has been implemented in
projects of not too large a size. It is the intension of the
researcher to implement this model on larger projects and
compare it with other estimation models to evaluate its
strength of estimation.

7. REFERENCES
[1] Abdulbasit, S.B. (2011). Proceeding of National

Conference, Computing for National Development, New
Dehlhi, India

[2] Evita, C. and Anirban, B. (2012). Efforts Estimation in
Agile Software Development Using Story Point.
International Journal of Applied Information System.

Vol 3, No. 7, Foundation of Computer Science, New
York, USA

[3] Dipendra, G., Shirley, G,. and Stuart, C. (2016).
Software development team views of success factor in
agile project.Annula conference of the National Advisory
Committee on Computing, New Zealand.

[4] Mercin, N. (2010). Agile team Meet a Fixed Price
Contract

[5] ESI international an informa business (2010). Successful
Solutions through agile project management, An ESI
international white paper. USA

[6] Waman, S. (2004). Software Engineering Principles and
Practices, Tata McGraw.Hill Publishing Company
Limited, New Delhi.

[7] Alexia, A and Jeffrey, W. (2009). Challengers reporting
projects cost and risk to owner decision makers,
International Women projects control, AACE
international Transaction, USA.

[8] Jovan, Z,. Zorica, M,. Dragan, M,. Alexsandra, D,. and
Sladana, V. (2011). Methods of effort estimation in
software engineering International Symposium
Engineering Management And Competitiveness,
Zrenjanin, Serbia

[9] Nerker, L,. and Yawalkar, P. (2014). Software Cost
Estimation using Algorithmic Model and Non-
Algorithmic Model a Review. International Journal of
Computer Applications, Innovations and Trends in
Computer and Communication Engineering,

[10] Mathias, K. (2011). Software Test Effort Estimation
Methods, Available on https://www.kerstner.at, retrieved
on 9th, June, 2017

[11] Valid, K. and Dayang, N. (2010). Software Cost
Estimation Methods: A Review, Journal of Emerging
Trends in Computing and Information Sciences, Volume
2 No. 1

https://www.kerstner.at/

Circulation in Computer Science, Vol.2, No.6, pp: (20-24), July 2017
www.ccsarchive.org

24

[12] Adolfo, V. (2014), Introduction to software project
management, Auerbach publications, USA

[13] Mathias, K.. (2011). Software Test Effort Estimation
Methods, Available on https://www.kerstner.at, retrieved
on 9th, June, 2017

[14] Geetika,B,. and Kuntal, B. (2013). A Review on Cost
and Effort Estimation Approach for Software
Development, International Journal of Engineering and
Innovative Technology, Volume 3, Issue 4,

[15] Doban, O,. and Andras, P. (2001). Cost Estimation
Driven Software Development Process, 27th Conference
of Euromicro, Warsaw, Poland

[16] Josephne, M,. and Rajeshwari, M. (2013). A Study On
Software Cost Estimation, International Journal of
Emerging Trend & Technology in Computer Science,
Special Edition.

[17] Omprakash, T,. Jyoti, S,. and Poonam, R. (2014).
Comparative Analysis of Software Cost And Effort
Estimation Methods: A Review, International Journal of
Computer Science and Mobile Computing, Vol.3 Issue.

[18] Tirimula, R,. Satchidananda, D,. and Rajib, M. (2012).
Computational intelligence in software cost estimation:
an emerging paradigm, ACM SIGSOFT Software
Engineering Notes, Volume 37 Issue 3, Pages 1-7
doi>10.1145/180921.2180932

[19] Victor, S. (2004). An introduction to agile software
development. Danube technologies Inc, Belevue.

[20] Tung, K. and Li Thi M.H. (2016). An Effort Estimation
Approach for Agile Software Development using
Fireworks Algorithm Optimized Neural Network,
International Journal of Computer Science and
Information Security, Vol. 14, No. 7.

[21] Adriano, L. (2006). Estimation of software project effort
work with support vector regression, Journal of
Neurocomputing, Volume 69 Issue 13-15, pages 1749-
1753.

[22] M. Cristal, D. Wildt and R. Prikladnicki, Usage of
SCRUM Practices within a Global Company. Global

[23] Arun, K,. and Tejaswani, N.(2016), Agile
Methodologies in Software Engineering and Web
Engineering, International .Journal of. Education and
Management Engineering, 5, 1-1

[24] Schwaber, C. and Fichera, R, Corporate IT leads the
second wave of agile adoption. Forrester Research, Inc,
2005.

[25] Malik, H. and Siew, H. (2009), Review of agile
methodologies in software development, International
Journal of Research and Reviews in Applied Sciences,
Volume 1, Issue 1

[26] Sriram, R,. and Saji, k. (2016), Choice of Agile
Methodologies in Software Development: A Vendor
Perspective,Journal of international technology and
management, volume 25, issue 2.

CCS | 2017 | ISSN 2456-3692

Published by: CSL Press, USA

https://www.kerstner.at/
https://doi.org/10.1145/180921.2180932

