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Abstract- Malaria-dengue co-infection is becoming a public health challenge with the growing report of the co-infection.
Much has been done on analyzing malaria, dengue, and other infection but much has not been done to study the co-
infection of malaria and dengue fever. A mathematical model to understand the transmission of malaria and dengue
infection was formulated using a system of ordinary differential equations. We computed the basic reproduction humber
and establish the equilibria point. The endemic equilibrium point was further investigated. The result shows that with the
reproduction number greater than one, the endemic equilibrium point was found to be locally asymptotically stable and
globally asymptotically stable.
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I.  INTRODUCTION

Malaria is transmitted via the bites of the disease carrier anopheles mosquito. It is brought about by five distinct types of
Plasmodium. However, Plasmodium falciparum is the most predominant in the continent and causes the most elevated
death rate evoked by the disease [1]. World Health Organization (WHO) in 2017, reported that 219 million cases of
malaria happened worldwide with Plasmodium falciparum and vivax parasite presenting high health challenge. Within the
WHO African Region that has the highest incidence of malaria worldwide, P. falciparum represent 99.7% of calculated
cases whereas P. vivax result for 74.1% of malaria cases within the WHO Region of Americas [2].

Dengue, a communicable disease brought about by any of DENVs 1-4, is a vector-borne disease transmitted by the female
Aedes mosquito. Dengue is highly prevalent in tropical areas, showing the vector distribution, Aedes aegypti mosquitoes.
33% of the globe is in danger [3]. Infection with DENV brings about mild asymptomatic dengue fever (DF) to serious
dengue fever hemorrhagic fever (DHF) and dengue fever shock syndrome (DSS) and can turn lethal [4]. Dengue Fever and
Malaria are the most predominant arthropod-borne diseases with world instance of 390 million and 214 million yearly,
respectively. Severe Malaria is a co-infection of Dengue and Malaria in a person [5, 6].

The paper aims to analyze the local and global stability of the endemic points of the co-infection model. In investigating
the local stability of the endemic points the author applied the central manifold theorem while the global stability was
proven by constructing a suitable Lyapunov function.

The remaining part of the paper is as follows: section 2 presented some related works. Section 3 is the Methodology, here
we defined the model assumptions, outlined the model parameters and variables. Section 4, consists of the model analysis.
Section 5, is the discussion and conclusion.

Il. RELATED WORKS

Bakare and Nwozo [7] studied a mathematical model to explore malaria and schistosomiasis co-infection. Schistosomiasis
also is known as snail fever or bilharziasis is a parasitic disease. The model consists of the human, vector, and snail
population. Amoah-Mensah et al. [8] in their work proposed a mathematical model to investigate the transmission of
Malaria and Zika in malaria-endemic areas. The model was analyzed to compute the two equilibria. The model consists of
nine (9) compartments. The sensitivity analysis from the work shows that improving the recovery rate of both diseases is
the best approach to control and eliminate the disease. Aldila and Agustin [9] formulated a mathematical model to
understand the spread of dengue and chikungunya in a closed population. The model consists of nine compartments
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wherein the human population is made up of five compartments while the mosquito population is made up of four
compartments. Bonyah et al. [10] presented a co-infection model for dengue-zika disease. In this work, the computation
was done to establish the basic reproduction numbers and the equilibrium point was analyzed. Ogunmiloro [11] formulated
a mathematical model to study the co-infection of malaria and toxoplasmosis in tropical regions. In this work, the basic
reproduction number was obtained, the local, global stability, and sensitivity analysis was carried out. Duncan, Owuor, and
Okaka [12] carried the stability analysis of the endemic equilibrium of an Ebola disease model. In [13] Xia, Yicang and
Hui proved the conditions for global stability of the endemic equilibrium of a SIR model. Ashezua, Udoo, and Ikpakyegh
[14] investigated the analysis of the Endemic Equilibrium of an Infection Age-structured HIV/AIDS disease. Deephi,
Radhika, and Praneeth [15] using Big data analytics investigate Epidemic Diseases

1. METHODOLOGY

3.1 Model Formulation
In this model, the human population denoted by N p is divided into eight classes which are susceptible humans (Sh )

individuals exposed to malaria only (Ehm), individuals infected with malaria only (Ihm), individuals exposed to dengue
fever only (Ehd ) individuals infected with only dengue fever (I hd ) individuals exposed to malaria and dengue fever
co-infection (Emd ) individuals infected with malaria and dengue fever co-infection (I nd ) individuals that recovered
from malaria and dengue fever (Rh). The vector population includes the Malaria Parasite non-carrier vectors (Sm )
Malaria parasite carrier vectors(l m ) Dengue virus non-carrier vectors (Sd ) and Dengue fever carrier vectors(l p )
Individuals are recruited through a constant A, . Susceptible individuals are infected with dengue fever through contact
with infectious vector at a rate ¢, , infected with malaria at a rate ¢, individuals who recover from malaria returns to the
susceptible class at a rate of y, , susceptible individual has a natural death rate of 44, . The class of individuals exposed to

malaria only are generated by susceptible individuals infected with malaria only and reduced by the rate of contracting
dengue fever at a rate ¢, the rate of progression to the malaria only infected class x, and natural death rate g4, . The

class of individuals infected with malaria (Ihm) is increased by xrate of progression from malaria exposed class,
reduced by the rate of contacting dengue fever at a rate ¢, disease-induced death rate &, , malaria only recovery rate &,
, and natural death rate ¢, . Individuals that are exposed to dengue fever only are generated by individuals infected with
dengue fever at arate ¢, reduced by the natural death rate 4, , rate of progression to infected class for dengue fever only
at rate, i, and the rate at which susceptible individuals contact malaria only. Individuals with dengue fever only (I hd) is
generated by individuals that progressed from the exposed class (Ehd) at the rate x,. It is also reduced by disease-
induced death rate 52 , recovery rate from dengue fever only 92 and the rate of contacting malaria only. The population of
individuals exposed to malaria and dengue fever co-infection (Emd )is increased by rate of acquiring malaria through

contact with the parasite carrier vectors and dengue fever through contact with dengue virus carrier vectors, but reduced by
natural death rate and rate of progression to infected malaria and dengue fever co-infection class x, . The infected malaria
and dengue fever co-infection class (I md )is increased by x,and reduced by the natural death rate, co-infection recovery
rate @, and disease-induced death rate o, . The recovery class (Rh) is generated by the individuals who recovery from
malaria only at the rate @, , individuals who recovers from dengue fever only at the rate @, , individuals who recover from
both diseases at the rate @,, and reduced by natural death rate and individuals who return to susceptible class after
recovery at the rate y, . The Malaria parasite non-carrier vector population (Sm ) is generated by a constant A _, reduced
by the vector natural death rate £z, and the rate at which the non-carrier vector acquires malaria parasite through contact
with exposed and infected individuals with malaria only and co-infection of malaria and dengue fever given as ¢, .. The

Malaria parasite carrier vector population is generated by the rate at which the non-carrier vector acquires malaria through
contact with exposed and infected individuals with malaria only and co-infection of malaria and dengue fever and the

natural death rate £z . The Dengue virus non-carrier vector population (Sd ) is generated by a constantAd , reduced by

the vector natural death rate z¢, , and the rate at which the Dengue virus non-carrier vector acquires dengue virus through

contact with exposed and infected individuals with dengue fever only and co-infection of malaria and dengue fever given
as - The Dengue virus carrier vector class (I d ) is increased by the rate at which Dengue virus non-carrier vector

© 2020, IJSRMSS All Rights Reserved 35



Int. J. Sci. Res. in Mathematical and Statistical Sciences Vol. 7, Issue.6, Dec 2020

acquires dengue virus through contact with exposed and infected individuals with dengue fever only and co-infection of
malaria and dengue fever and reduced by the vectors natural death rate ¢, .

3.2 Model Assumptions
Assumptions made in the formulation of the equations includes:
1. Recruitment into the susceptible population is constant

2. The recovery population include those jointly infected with Malaria and Dengue fever only
3. Recovery from Dengue fever is permanent.

Figure 1. Schematic Representation of the Model

The equations governing the co-infection dynamics is given as,

%:Ah+7/thm—(adld +a,l.)S, — 1Sy, 1)
dl:_j:m =Sy — (agly + 5 + 14,) By 2
d:j:m =B, — (agly + 6+ 6 + u)l,, ®3)
di:d = aglySy, = (el +56, + 14,) By @
%:KZEhd_(am|m+52+92+/uh)lhd 5)
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dE
md _
. gl g B + gl gl + o 1 Eng + ot g = (5 + 24)Epg (6)
dl
4 = oy — (0 + 65+ 1) g @)
dt
drR
hm _
dt = Ol + Ol + 61 ng — (7 + 140) R, ®)
ds
m _
dt - Am _avm(Ehm + Ihm + Emd + Imd)s’m _lumSm 9)
dl
m _
dt - vm(Ehm_i_Ihm"_E +Imd)S :um m (10)
dS
d _
T Ay =g (Eng + lhg + Eng + 1na)Sa — 145 (11)
dl
=y (Epg + g + Emg +11ng)Sq — #q 14 (12)
dt
Table 1. Variables of the Model
Symbols Description
S Susceptible Humans
h
E, Exposed Humans with Malaria
m
L, Humans infected with Malaria only
m
Ehd Exposed Humans with Dengue Fever
|hd Humans infected with Dengue Fever only
E g Exposed Humans jointly infected with Malaria and Dengue Fever
m
| . Humans jointly infected with Malaria and Dengue Fever
m
A Humans Recovered from Malaria and Dengue Fever
S, Malaria Parasite carrier vectors
L, Malaria Parasite non-carrier vectors
S Dengue virus non-carrier vectors
d
| Dengue virus carrier vectors
d
Table 2. Parameters of the Model
Symbols Description
A Recruitment of Human Population
h
A Recruitment of Malaria Parasite Vectors
m
A Recruitment rate of Dengue Virus Vectors
d
f2) Recovery rate for Humans infected with Malaria only
1
0, Recovery rate for Human infected with Dengue only
93 Recovery rate for Human jointly infected with Malaria and Dengue
7 Rate at which recovered becomes susceptible
K, Rate at which E, becomes I,
K, Rate at which E, ; becomes |,
K Rate at which E_ , becomes | _
a,, Transmission rate of Malaria Parasite Vectors

© 2020, IJSRMSS All Rights Reserved 37




Int. J. Sci. Res. in Mathematical and Statistical Sciences Vol. 7, Issue.6, Dec 2020

a, Transmission rate of Dengue Virus Carrier Vectors
a,, Probability for Malaria Parasite Vectors to be infected
a,, Probability for Dengue Virus Vectors to be infected

o Disease induced death for |,

o, Disease induced death for |, ,

o Disease induced death for |,

i Human Natural death rate
U, Death rate of Malaria Parasite Vectors

Ly Death rate of Dengue Virus Vectors

IV. MODEL ANALYSIS

4.1 Reproduction Number (Ro)
Reproduction number is the number of secondary infection generated by one infectious individual. The next-generation
matrix is employed to compute the Ro , Which is given as

Ry = max{Rop, Roa | (13)

where
AA o a, (2, +K
ROm: h**m*m vm(zl 1) (14)
M2y My M,
and
AAjaa,4(2, +K
Ry = h4}d %d vd(z 2) (15)
M2y Hn My
These are the reproduction number of malaria and dengue fever respectively.
4.2 Disease Free Equilibrium (DFE) and Endemic Equilibrium (EE) Points
DFE (&, ) is when there is no disease in the population and it is given as
0 0 0 0 o0 0 0 0 0 |0 g0 §O
o :(Sh’Ehm’ Lo Ena s Tha» Emas g Rims S I s S ’Id)
A A A (16)
= _h 1070i0i0i01070i — 7Oi _d 70
Hn Hm Hy

The EE (6‘E) is when the diseases persist in the community. It is therefore given as

* *

- - - . - - - - .
Ee :(Sh1Ehm' Ihm'Ehd’Ihd’Emd'Imd'Rhm"Sm'lm1Sd7ld):

Qe arnlrnQG KlamlmQ6
Qs +Qs (adld +771)(Q4+Q5) (gl y +Zl)(adld +771)(Q4+Q5)
oyl Qg Krory 14Qg

(b + 72, Qs + Qs) " (@i + Zo Nty iy + 72, Q4 + Qs
Ag Vg 1 QsQs g Ly i 55Q:Q6 NLQy
175(Qs +Qs) T 2am75(Qu + Q) T (Qu +Qs)’
Am(@ala +77)(Qu +Qs)
Ay | Q1 Qg + £t (g g +17)(Qu +Qs)’
A otymorn 1 QQ6
£ty (O 1 QiQg + 2 (g 1y + 17, Qs + Q5))’
Ny (amlm +772)(Q4 + Q5)
Ayq o 1 Q6 + 2 (A 1y + 772, Q4 + Qs)’
Ngtygxy 14Q2Q6 (%))
225 (g g 1 4Q,Q6 + £4g (X 1y + 17, Q4 + Qg ))
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Where
K
1+ —21
( " (adld "'21)]
Ql — (ad Id +101Xam|m + Z2)(05m|m +772) (18)
+ad|d (@l + o Ny ly + 2 Nty ly +7121) (14_&}
773 (adld_'_zl)(adld+771)(am|m+22)(amlm+772) Z3
K
14— 2
[ NCHE +z2)j
sz (adld+pl)(am|m+22)(amlm+772) (19)
+am|m +(am|m+p2)(ad|d+Zl)(ad|d+771) [14_&]
173 (adld+Zl)(ad|d+771)(am|m+22)(amlm+772) Z3
(ad Id +pl)(am|m + Z2)(05m|m +772)
Q, = + (Ul + P2 Mg ly +20) (gl +771) (20)
(agly +2)(agly +m) (o) + 25) (e, +177,)
Q, = 23773:uh[(ad g +apl, +ﬂh)(0‘d lq + Zl)(ad I "‘771) 21)
(am|m+22)(amlm+772)
23773(ad Iy + ol +,Uh)(0‘d Iy + Zl)(ad Iy +771)(am|m + Zz)
HlKlamImZ3773(amlm + 2, )(amlm +772)
Qs = + 0,504 |d23773(05d Iy + Zl)(ad Iy +771) (22)
(amlm +772)_
+ Oay0lg gt 1 1 Qs(@g 1y + 2, N 1y +71)
(am|m+22)(am|m+772)
Qs :Ah23773(7/h +:uthd 4 +21)(0‘d 4 +771)(am|m +22Xam|m +772) (23)
Q; = 91K1237730‘m|m(0‘m|m + Zz)(amlm + 772)Jr 0,5, 2311504 Id(ad lg + Zl)(ad Iy + 771) (24)
+93K3am|mad|d(adld + Zl)(ad 4 +771)(am|m + ZZXamIm "‘772)
and
2, =0, +0, + iy,
Z, =0,+0, +u,
Z3 :(53 + 6, +,Uh)
=y, +K
M = Hy 1 (25)
Ny = My T K,
N3 :<K3 +,Uh)
P11 =17tk
Pr =1y +K,
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4.3 Local Stability of the Endemic Equilibrium (EE) Point
The Central Manifold Theorem [16] is applied in analyzing the local stability of the EE point.
The system equation (1) — (12) can be re-written in a dimensionless state variable as follows:

X =S X = B X3 = Tyni Xg = Ega X5 = ligs X = Engs X7 = g Xa = Ry (26)
Xg = Spi X0 = I X1 =S¢, %, = 1y,
Using the vector notation, (1) — (12) can be re-written in the form
dX,
2t Z F(X 27)
LS
where
.
Xo = (%0 X, Xg1 Xg X5 X1 X7 X X9 %00, %01, %32) 28)
.
F=(f, £, £, £, f, £, f, fo, fig, £, 1))
S0 we now have
dx,
P Ap + 7% = (g X0 + QX0 )X — 1% (29)
dx,
at XX — (@ Xy, + 1 + 11y )X, (30)
dx,
at KXo — (g Xy + 6, + 6, + 1, )X, (31)
dx,
ot % X% = (G Xao + 165 + pty Xy (32)
dxs
at K% —(anXyo + 8, + 0, + 1, )X (33)
X,
at Qg %5(Xg + Xg )+ 0t Xy o(Xy + X5 ) — (a5 + 44, X (34)
dx
d_t7 = 13X — (O + Oy + 14, )X, (35)
dxg
s O Xs + Oy%s + 05X, — (71, + 14 )Xe (36)
dxq
o Ay = Oy (X + Xg + Xg + X; g — 4 Xg (37)
P _ g (X, + Xg + Xg + X, )Xg — 38
dt_vm236791umxlo (38)
dxy,
gt Ag =0y (X4 + X + Xg + X Xy — 11X, (39)
dx,,
Tdt = Oy (X4 T X5+ Xg + X7 )X11 — X2 (40)

This method requires the evaluation of the Jacobian of the equations (29) - (40) disease free equilibrium (DFE) denoted by

‘](30)-

© 2020, IJSRMSS All Rights Reserved 40



Int. J. Sci. Res. in Mathematical and Statistical Sciences Vol. 7, Issue.6, Dec 2020

J(go):

-4, 0O O O O 0 0 y 0 -b, 0 —b,
o -, 0 0 0O O O 0 0 b 0 O
0O «x -z 0O O 0 0O 0 0 0 0 0
o o0 0 -, 0 O O 0 0 0 0 b
o 0 0 «x, -z, 0 0 0 0 0 0 0
0 0 0 0 0 -n, O 0 0 0 0 0 0
o 0 0O 0 0 «x, -z O 0 0 0 0 |
o o 6 0 6 0 6 -z 0O 0 0 O
0 -b, =b, 0 0 —b, —b, 0 —pu, O 0 0
0 b, b 0 0 b, b, 0 0 —-ux 0 0
o 0 0 -b, -b, -b, =b, 0 0 0 -—u, O
o 0 0 b, b, b b 0 0 0 0 —pu
(41)
Where
bl_amAh
Hy
b_adAh
2
: “A (42)
bszavm m
Hy,
b:avdAd
4
Hy
The right eigenvector denoted by
W:(W11W2’W3!W4’W5’W6’W7,Ws’W9!W10’W11’W12)T (43)
are given as
[3(s0)Iw] = [0] (44)
Solving the equations we have;
_ W3<K1917h _7712124)’ " Ws(’(2927h _7722224)1 W = Z; Wy W, = Z3Wg
1= P2 T4 '
KaZy K24 M Ky K
Gw, + 0,w, Z,W. Z,W, Z,W,
= L3 72 5,W9:—7711 3WlO:7711 3 112_7722 5 (45)
Z, Kby Kby K,
W, = 7272\ W, > 0,w; >0,w; =w, =0.
2M2
The left eigenvalues denoted by
V:(Vl’v2’V37V4’V5’V6’V7’V8’V9’ 10’V11’V12’V13’V14)T (46)
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are given below as

[3(z,)] [v]=[0] (47)

Solving the equations we have;

v, = HmVio v, = ThtmVio v, = HgVio v, = MotqVia
by by(z, +x;) b, b, (2, + ;) 48)
M2Ve

v, = Vg >0,v,p >0,v,>0,v, =vg =vy =V, =0.

(z, +x,)
Consider R, =1 (assuming that R, < R,,,) and choose ¢, = 0(:;1 as the bifurcation parameter. Solving for
a, :a; from R, =1 gives

v _ T2t
m
AN oy (Zl + K‘l)

(49)

The following theorem is used to compute whether or not there exists a backward bifurcation Ro =1in the system (29) -

(40) [17].
Theorem 1: Consider the following general system of ordinary differential equations with a parameter ¢ such that

dX
——f(x #):R" xR - Randf € C*(R" x R)

where 0 is an equilibrium point of the system (l.e.f((), @ )=0forall ¢ ) and

f
i. Q=D f(0,0)= (a—' (0,0)) s the linearization matrix of the system around the equilibrium point 0 with
X .
J
¢ evaluated at 0;
ii. Zero is a simple eigenvalue of Q and all other eigenvalues of Q have negative real parts;
iii. Matrix Q has a right eigenvector w and a left eigenvector v corresponding to the zero eigenvalue.

Let f, bethe kKth componentof f and

a= i of, k_(0,0) (50)
= Jaxax
n o° f
b= v.w, —& (0,0 51
PR .axj%( ) (51)

then the dynamics of the system around the equilibrium point 0 is totally determined by the sign of @ and b. Particularly.
i. a>0,b>0.when ¢<0 with |¢ | & 1; 0 is locally asymptotically stable; and there exists a positive
unstable equilibrium; when 0 < ¢ <« 1 ; 0 is unstable and there exists a negative and locally asymptotically
stable equilibrium.
i. a<0b<0.when¢<0 with |¢ | « 1 ; 0 is unstable; when 0 < ¢ <« 1; 0 is locally asymptotically
stable; and there exists a positive unstable equilibrium.
iii. a>0 b<0.when ¢ <0 with |¢ | &« 1, 0 is unstable, and there exists a locally asymptotically stable

negative equilibrium; when 0 < | 7 | « 1; 0is stable; and a positive unstable equilibrium appears.

iv. a<0,b>0. when ¢ changes from negative to positive, 0 changes its stability from stable to unstable.

Correspondingly a negative unstable equilibrium becomes a positive and locally asymptotically stable.
After so many computations we have
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a=
VoW, vV, W, v o
10Wo
( ) ( ) T VoW g
+ W5V — Vs + W, (Vg —Vy
and
0% f VW, A
b=v,wy, 2 =210 50 53

aXloaam Hp,

It is observed that & > O andb > O the result satisfies the theorem above. Hence, it is locally asymptotically stable.

4.4 Global Stability of Endemic Equilibrium Points
Theorem 2: The endemic equilibrium &z of the system is globally asymptotically stable wherever Ro >1.
Proof: We construct a common quadratic Lyapunov function [18]

V(Sh'Ehm’Ihm’Ehd’ Ihd’Emd’Imd’Rh’Sm’I S Id):

1{(sh =8 )+ (B = En )+ (1= 1)+ (B — Ee) J

A . N (54)
+(Ihd_|hd)+(Emd Emd) (l _Imd)+(Rh_Rh .

2

I R R R O PR

d_V _ |:(Sh - S;)+ (Ehm - E;m)+ (Ihm - Ir?m)+ (Ehd - E;d) :|
dt |+ (1 = 17 )+ (B — B )+ (1 = 176 )+ (R, — R?)

i(Sh+Ehm+Ihm+Ehd+Ihc,+Emo,+Imd+Rh) (55)

dt

8- 52+ 1 - 121 0 1)+ 8, - 52)+ (- 554+ 1)
_|:( Sh)+< Ehm) (Ihm_lsm)+<Ehd_E;d) }

dt -

(g =10+ (E —En )+ (g = 154)+ (R, = R?)

(Ah_ h(sh+Ehm+Ihm+Ehd+|hd+Emd+|md+Rh)j (56)
— (Gl + Syl + Sl ng)

el =52+ (1 =13 A sy, +1,)

+[(Sd_ d) (d_ d)Ad_ #a(Sq +14))

Assuming

Ah:ﬂh(S:+E:m+|;m+E:d+|;d+E;d+l;\d+R;)

(800 + Sl +5,0%) )

Ap = ti(Sh +17)

Aq :ﬂd(S;JF |;)
We have
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av _ (Sh - S;)Jr (Ehm - E;m)+ (Ihm - |;m)+ (Ehd - E;d)
dt +(Ihd_Ir’:d)—i_(Emd_E;d)+(|md_|;\d)+(Rh_R;)
iy (Sh - S;)+ (Ehm - E;m)+ (Ihm - |;m)+ (Ehd - E;d)
h +(Ihd_|:d)+(E ) (Imd ) (R R ) (58)
(51(|hm )+5 (I d) (Imd md))
sl s s+ 0, 12)
~ Mg [(Sd ) ( |;)K(Sd )+ (ld ))

Let
T1 = Sh _S:7T = E Ehm’T = Ihm_ |;m,T4 = Ehd - E;d’TS = Ihd - Ir:d
T.=E,~E T, =l,-14Ts=R —-R.,T,=S.-S To=1,-1", 59
5

T,=S,-S;T,=14 - Id,T13 =T+, +T,+T, + T+ T, +T, +Tg,
T14 = T9 +T101T15 = 11+T12
So

av

ot (ﬂhT T13(51T3 + 6,15 +53T7)+HmT1§1+ﬂdT1€> (60)
It can be seen thatd—V <0 andd—v = 0 ifand only if

dt dt
S, =Sh Enm = Enm lim = o Eng = Engs hg = 1ngEmg = Enm
h h hms 'h h hd hds 'hd hd =md d (61)

* * *

m?'™m m?

Imdzlmd’Rh:Rh’Sm:S Sq =Sg.lg =14
From LaSalle’s invariant Principle all solutions in (1) — (12) approaches &g as > ifR0 >1. The endemic
equilibrium &g is therefore globally asymptotically stable in I" whenever Ro >1.

V. DISCUSSION AND CONCLUSION

In this work, a model to evaluate malaria and dengue fever co-infection is proposed using system of non-linear ordinary
differential equations. We compute the reproduction number using the next generation matrix and established the Disease
Free and Endemic Equilibrium points. Applying the central Manifold theorem we prove that the Endemic point is locally
stable and we prove using the quadratic Lyapunov function that the endemic equilibrium is globally stable. It shows that
when protective precaution are taken, the disease transmission will not cause much death. Also, future analysis can be
carried out to consider sensitivity analysis and optimal control, age structure, impact of hygiene, climate etc can be
considered in extending the model.
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