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Abstract- Malaria-dengue co-infection is becoming a public health challenge with the growing report of the co-infection. 

Much has been done on analyzing malaria, dengue, and other infection but much has not been done to study the co-

infection of malaria and dengue fever. A mathematical model to understand the transmission of malaria and dengue 

infection was formulated using a system of ordinary differential equations. We computed the basic reproduction number 

and establish the equilibria point. The endemic equilibrium point was further investigated. The result shows that with the 

reproduction number greater than one, the endemic equilibrium point was found to be locally asymptotically stable and 

globally asymptotically stable. 
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I. INTRODUCTION 

 

Malaria is transmitted via the bites of the disease carrier anopheles mosquito. It is brought about by five distinct types of 

Plasmodium. However, Plasmodium falciparum is the most predominant in the continent and causes the most elevated 

death rate evoked by the disease [1]. World Health Organization (WHO) in 2017, reported that 219 million cases of 

malaria happened worldwide with Plasmodium falciparum and vivax parasite presenting high health challenge. Within the 

WHO African Region that has the highest incidence of malaria worldwide, P. falciparum represent 99.7% of calculated 

cases whereas P. vivax result for 74.1% of malaria cases within the WHO Region of Americas [2].  

 

Dengue, a communicable disease brought about by any of DENVs 1–4, is a vector-borne disease transmitted by the female 

Aedes mosquito. Dengue is highly prevalent in tropical areas, showing the vector distribution, Aedes aegypti mosquitoes. 

33% of the globe is in danger [3]. Infection with DENV brings about mild asymptomatic dengue fever (DF) to serious 

dengue fever hemorrhagic fever (DHF) and dengue fever shock syndrome (DSS) and can turn lethal [4]. Dengue Fever and 

Malaria are the most predominant arthropod-borne diseases with world instance of 390 million and 214 million yearly, 

respectively. Severe Malaria is a co-infection of Dengue and Malaria in a person [5, 6].  

 

The paper aims to analyze the local and global stability of the endemic points of the co-infection model. In investigating 

the local stability of the endemic points the author applied the central manifold theorem while the global stability was 

proven by constructing a suitable Lyapunov function. 

 

The remaining part of the paper is as follows: section 2 presented some related works. Section 3 is the Methodology, here 

we defined the model assumptions, outlined the model parameters and variables. Section 4, consists of the model analysis. 

Section 5, is the discussion and conclusion. 

 

II. RELATED WORKS 

 

Bakare and Nwozo [7] studied a mathematical model to explore malaria and schistosomiasis co-infection. Schistosomiasis 

also is known as snail fever or bilharziasis is a parasitic disease. The model consists of the human, vector, and snail 

population. Amoah-Mensah et al. [8] in their work proposed a mathematical model to investigate the transmission of 

Malaria and Zika in malaria-endemic areas. The model was analyzed to compute the two equilibria. The model consists of 

nine (9) compartments. The sensitivity analysis from the work shows that improving the recovery rate of both diseases is 

the best approach to control and eliminate the disease. Aldila and Agustin [9] formulated a mathematical model to 

understand the spread of dengue and chikungunya in a closed population. The model consists of nine compartments 

http://www.isroset.org/
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wherein the human population is made up of five compartments while the mosquito population is made up of four 

compartments. Bonyah et al. [10] presented a co-infection model for dengue-zika disease. In this work, the computation 

was done to establish the basic reproduction numbers and the equilibrium point was analyzed. Ogunmiloro [11] formulated 

a mathematical model to study the co-infection of malaria and toxoplasmosis in tropical regions. In this work, the basic 

reproduction number was obtained, the local, global stability, and sensitivity analysis was carried out. Duncan, Owuor, and 

Okaka [12] carried the stability analysis of the endemic equilibrium of an Ebola disease model. In [13] Xia, Yicang and 

Hui proved the conditions for global stability of the endemic equilibrium of a SIR model. Ashezua, Udoo, and Ikpakyegh 

[14] investigated the analysis of the Endemic Equilibrium of an Infection Age-structured HIV/AIDS disease. Deephi, 

Radhika, and Praneeth [15] using Big data analytics investigate Epidemic Diseases 

 

III. METHODOLOGY 

 

3.1 Model Formulation 

In this model, the human population denoted by 
hN is divided into eight classes which are susceptible humans  

h
S , 

individuals exposed to malaria only  
hm

E , individuals infected with malaria only  
hm

I , individuals exposed to dengue 

fever only  
hd

E , individuals infected with only dengue fever  
hd

I , individuals exposed to malaria and dengue fever 

co-infection  
md

E , individuals infected with malaria and dengue fever co-infection  
md

I , individuals that recovered 

from malaria and dengue fever  
h

R . The vector population includes the Malaria Parasite non-carrier vectors  
m

S , 

Malaria parasite carrier vectors  
m

I , Dengue virus non-carrier vectors  
d

S , and Dengue fever carrier vectors  
d

I . 

Individuals are recruited through a constant
h

 . Susceptible individuals are infected with dengue fever through contact 

with infectious vector at a rate
d

 , infected with malaria at a rate 
m

 , individuals who recover from malaria returns to the 

susceptible class at a rate of 
h

 , susceptible individual has a natural death rate of 
h

 . The class of individuals exposed to 

malaria only are generated by susceptible individuals infected with malaria only and reduced by the rate of contracting 

dengue fever at a rate 
d

 , the rate of progression to the malaria only infected class 
1

  and natural death rate 
h

 . The 

class of individuals infected with malaria  
hm

I  is increased by 
1

 rate of progression from malaria exposed class, 

reduced by the rate of contacting dengue fever at a rate 
d

 , disease-induced death rate 
1
 , malaria only recovery rate 

1


, and natural death rate 
h

 . Individuals that are exposed to dengue fever only are generated by individuals infected with 

dengue fever at a rate 
d

 , reduced by the natural death rate 
h

 , rate of progression to infected class for dengue fever only 

at rate, 
2

 and the rate at which susceptible individuals contact malaria only. Individuals with dengue fever only  
hd

I  is 

generated by individuals that progressed from the exposed class  
hd

E  at the rate 
2

 . It is also reduced by disease-

induced death rate
2

 , recovery rate from dengue fever only 
2

 and the rate of contacting malaria only. The population of 

individuals exposed to malaria and dengue fever co-infection  
md

E is increased by rate of acquiring malaria through 

contact with the parasite carrier vectors and dengue fever through contact with dengue virus carrier vectors, but reduced by 

natural death rate and rate of progression to infected malaria and dengue fever co-infection class
3

 . The infected malaria 

and dengue fever co-infection class  
md

I is increased by 
3

 and reduced by the natural death rate, co-infection recovery 

rate
3

  and disease-induced death rate 
3

 . The recovery class  
h

R  is generated by the individuals who recovery from 

malaria only at the rate
1

 , individuals who recovers from dengue fever only at the rate 
2

  , individuals who recover from 

both diseases at the rate 
3

 , and reduced by natural death rate and individuals who return to susceptible class after 

recovery at the rate
h

 . The Malaria parasite non-carrier vector population  
m

S  is generated by a constant
m

 , reduced 

by the vector natural death rate
m

   and the rate at which the non-carrier vector acquires malaria parasite through contact 

with exposed and infected individuals with malaria only and co-infection of malaria and dengue fever given as
vm

 . The 

Malaria parasite carrier vector population is generated by the rate at which the non-carrier vector acquires malaria through 

contact with exposed and infected individuals with malaria only and co-infection of malaria and dengue fever and the 

natural death rate
m

 . The Dengue virus non-carrier vector population  
d

S  is generated by a constant d , reduced by 

the vector natural death rate
d

 , and the rate at which the Dengue virus non-carrier vector acquires dengue virus through 

contact with exposed and infected individuals with dengue fever only and co-infection of malaria and dengue fever given 

as
vd

 . The Dengue virus carrier vector class  
d

I  is increased by the rate at which Dengue virus non-carrier vector 
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acquires dengue virus through contact with exposed and infected individuals with dengue fever only and co-infection of 

malaria and dengue fever and reduced by the vectors natural death rate
d

 . 

 

3.2 Model Assumptions 

Assumptions made in the formulation of the equations includes: 

1. Recruitment into the susceptible population is constant 

2. The recovery population include those jointly infected with Malaria and Dengue fever only 

3. Recovery from Dengue fever is permanent. 

 

 
Figure 1.  Schematic Representation of the Model 

 

The equations governing the co-infection dynamics is given as, 

hhhmmddhmhh
h SSIIR

dt

dS
  )(         (1) 

hmhddhmm
hm EISI

dt

dE
)( 1          (2) 

hmhddhm
hm IIE

dt

dI
)( 111         (3) 

hdhmmhdd
hd EISI

dt

dE
)( 2          (4) 

hdhmmhd
hd IIE

dt

dI
)( 222            (5) 
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mdhhdmmhdmmhmddhmdd
md EIIEIIIEI

dt

dE
)( 3      (6) 

mdhmd
md IE

dt

dI
)( 333  

        

(7) 

hmhhmdhdhm
hm RIII

dt

dR
)(321  

      

(8) 

mmmmdmdhmhmvmm
m SSIEIE

dt

dS
  )(       (9) 

mmmmdmdhmhmvm
m ISIEIE

dt

dI
  )(       (10)  

dddmdmdhdhdvdd
d SSIEIE

dt

dS
  )(      (11)  

dddmdmdhdhdvd

d ISIEIE
dt

dI
  )(       (12)  

 
Table 1.  Variables of the Model 

Symbols Description 

hS  
Susceptible Humans 

hmE  Exposed Humans with Malaria 

hmI  Humans infected with Malaria only 

hdE  Exposed Humans with Dengue Fever 

hdI  Humans infected with Dengue Fever only 

mdE  Exposed Humans jointly infected with Malaria and Dengue Fever 

mdI  Humans jointly infected with Malaria and Dengue Fever 

h
R

 
Humans Recovered from Malaria and Dengue Fever 

mS
 

Malaria Parasite carrier vectors 

mI
 

Malaria Parasite non-carrier vectors 

dS
 

Dengue virus non-carrier vectors 

dI
 

Dengue virus carrier vectors 

 
Table 2.  Parameters of the Model 

Symbols Description 

h  Recruitment  of Human Population 

m  Recruitment  of Malaria Parasite Vectors 

d  Recruitment rate of Dengue Virus Vectors 

1  Recovery rate for Humans infected with Malaria only 

2  Recovery rate for Human infected with Dengue only 

3  Recovery rate for Human jointly infected with Malaria and Dengue 

h  Rate at which recovered becomes susceptible 

1  
Rate at which 

hmE becomes 
hmI  

2  
Rate at which

hdE  becomes  
hdI  

3  
Rate at which

mdE  becomes  
mdI  

m  
Transmission rate of Malaria Parasite Vectors 
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d  
Transmission rate of Dengue Virus Carrier Vectors  

vm
 

Probability for Malaria Parasite Vectors to be infected 

vd


 
Probability for Dengue Virus Vectors to be infected 

1  
Disease induced death for 

hmI  

2  
Disease induced death for 

hdI  

3  
Disease induced death for 

mdI  

h  
Human Natural death rate  

m  
Death rate of Malaria Parasite Vectors 

d  
Death rate of Dengue Virus Vectors 

 

IV. MODEL ANALYSIS 

 

4.1 Reproduction Number  0R  

Reproduction number is the number of secondary infection generated by one infectious individual. The next-generation 

matrix is employed to compute the
0R , which is given as  

 dm RRR 000 ,max          (13) 

where 

 
2

11

11

0

mh

vmmmh
m

z

z
R



 
          (14) 

and 

 
2

22

22

0

dh

vdddh
d

z

z
R



 
           (15) 

These are the reproduction number of malaria and dengue fever respectively. 

4.2 Disease Free Equilibrium (DFE) and Endemic Equilibrium (EE) Points 

DFE ( 0 ) is when there is no disease in the population and it is given as  

 










 




0,,0,,0,0,0,0,0,0,0,

,,,,,,,,,,, 000000000000
0

d

d

m

m

h

h

ddmmhmmdmdhdhdhmhmh ISISRIEIEIES





     (16) 

The EE )( E  is when the diseases persist in the community. It is therefore given as  

 
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ddvdd
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ddmmmvmm

mmvmm

ddmmmvm
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hmmddmmdd

mmmm

dd

mm

dd

dddd

mm
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
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                (17) 
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Where  

 
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and
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4.3 Local Stability of the Endemic Equilibrium (EE) Point 

The Central Manifold Theorem [16] is applied in analyzing the local stability of the EE point.  

The system equation (1) – (12) can be re-written in a dimensionless state variable as follows: 

,,,,

,,,,,,,,

1211109

87654321

ddmm

hmmdmdhdhdhmhmh

IxSxIxSx

RxIxExIxExIxExSx




  (26) 

Using the vector notation, (1) – (12) can be re-written in the form 

 t
t XF

dt

dX
            (27) 

where 

 

  









T

T

t

ffffffffffffF

xxxxxxxxxxxxX

121110987654321

121110987654321

,,,,,,,,,,,

,,,,,,,,,,,
      (28) 

so we now have 

  1110128
1 xxxxx

dt

dx
hmdhh         (29) 

  2112110
2 xxxx

dt

dx
hdm          (30) 

  3111221
3 xxx

dt

dx
hd          (31) 

  4210112
4 xxxx

dt

dx
hmd          (32) 

  5221042
5 xxx

dt

dx
hm          (33) 

      6354103212
6 xxxxxxx

dt

dx
hmd        (34) 

  73363
7 xx

dt

dx
h          (35) 

  8735231
8 xxxx

dt

dx
hh          (36) 

  997632
9 xxxxxx

dt

dx
mvmm         (37) 

  1097632
10 xxxxxx

dt

dx
mvm          (38) 

  11117654
11 xxxxxx

dt

dx
mvdd         (39) 

  12117654
12 xxxxxx

dt

dx
mvd          (40) 

 

This method requires the evaluation of the Jacobian of the equations (29) - (40) disease free equilibrium (DFE) denoted by

 0J .  
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           (41) 

 

Where 

           (42) 

 

The right eigenvector denoted by 

 Twwwwwwwwwwwww 121110987654321 ,,,,,,,,,,,      (43) 

are given as 

     00 wJ             (44) 

 

Solving the equations we have; 
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The left eigenvalues denoted by 

     (46) 
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are given below as 

           (47) 

Solving the equations we have; 

   
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    (48) 

 

Consider 10 R (assuming that
md RR 00  ) and choose 

*

mm   as the bifurcation parameter. Solving for 

*

mm    from 10 R  gives 

 11
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11*









z

z

vmmh

mh
mm        (49) 

 

The following theorem is used to compute whether or not there exists a backward bifurcation in the system (29) - 

(40) [17]. 

Theorem 1: Consider the following general system of ordinary differential equations with a parameter  such that  

  

  
                              

where 0 is an equilibrium point of the system (                     ) and 

i. is the linearization matrix of the system around the equilibrium point 0 with 

 evaluated at 0; 

ii. Zero is a simple eigenvalue of  and all other eigenvalues of  have negative real parts; 

iii. Matrix has a right eigenvector w and a left eigenvector v corresponding to the zero eigenvalue. 

Let  be the  component of  and  

 
 




n

jik
ji

k
jik

xx

f
wwva

1,,

2

0,0                                              (50) 

 0,0
1,,

*

2


 




n

jik
j

k
ik

x

f
wvb


                                            (51) 

then the dynamics of the system around the equilibrium point 0 is totally determined by the sign of  and . Particularly. 

i. , .When  with | |    ; 0 is locally asymptotically stable; and there exists a positive 

unstable equilibrium; when       ; 0 is unstable and there exists a negative and locally asymptotically 

stable equilibrium. 

ii. .When  with  | |    ; 0 is unstable; when      ; 0 is locally asymptotically 

stable; and there exists a positive unstable equilibrium. 

iii. .When  with | |    , 0 is unstable, and there exists a locally asymptotically stable 

negative equilibrium; when   | |    ; 0 is stable; and a positive unstable equilibrium appears. 

iv. , . When
 
  changes from negative to positive, 0 changes its stability from stable to unstable. 

Correspondingly a negative unstable equilibrium becomes a positive and locally asymptotically stable. 

After so many computations we have  

     0)(
0

vJ
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1
0
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

))0,0(()0,0(
j

i

x
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f
fDQ






Q Q

Q

k
f kth f

a b

0a 0b 0

0a 0b 0

0a 0b 0

0a 0b
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 (52) 

and 
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*
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2
2

102 








h

h

m

wv

x

f
wvb


       (53) 

It is observed that 0a  and 0b  the result satisfies the theorem above. Hence, it is locally asymptotically stable.  

 

4.4 Global Stability of Endemic Equilibrium Points 

Theorem 2: The endemic equilibrium E  of the system is globally asymptotically stable wherever 10 R . 

Proof: We construct a common quadratic Lyapunov function [18] 
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Differentiating 
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We have 
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It can be seen that 0
dt
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From LaSalle’s invariant Principle all solutions in (1) – (12) approaches E  as t  if 10 R . The endemic 

equilibrium E  is therefore globally asymptotically stable in  whenever 10 R . 

 

V. DISCUSSION AND CONCLUSION 

 

In this work, a model to evaluate malaria and dengue fever co-infection is proposed using system of non-linear ordinary 

differential equations. We compute the reproduction number using the next generation matrix and established the Disease 

Free and Endemic Equilibrium points. Applying the central Manifold theorem we prove that the Endemic point is locally 

stable and we prove using the quadratic Lyapunov function that the endemic equilibrium is globally stable. It shows that 

when protective precaution are taken, the disease transmission will not cause much death. Also, future analysis can be 

carried out to consider sensitivity analysis and optimal control, age structure, impact of hygiene, climate etc can be 

considered in extending the model. 
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