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state of a mathematical model of malaria disease in the 

presence of drug therapy and treatment 

 
E Azuaba, RA Azeez and RA Adewoye  

 
Abstract 

In this paper, we propose a mathematical model of malaria disease in the presence of drug therapy and 

treatment. We obtained the Disease Free Equilibrium (DFE) points and compute the effective 

reproduction number  .effR The local and global stability of the DFE was analyzed using the 

approaches of Jacobian Matrix t analysis and Lyapunov function respectively. The local and global 

stability is asymptotically stable if 1effR  and ,1effR  respectively. The effective reproduction 

number, drug therapy and treatment were numerically simulated and the results are presented in graphical 

form. 
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1. Introduction 

Malaria disease is caused by Plasmodium parasites. The parasites are spread to people through 

the bites of an infected female Anopheles mosquito known as malaria vector. In [1] 219 million 

cases of malaria were estimated in 89 countries by World Health Organization (WHO). The 

estimated number of malaria deaths stood at 435,000 in 2017 as given by [1] that African 

region carries a disproportionately high share of the global malaria burden. Their statistics 

showed that in 2017, the region was placed on 92 percent of malaria cases and 93 percent of 

malaria deaths. In 2010, WHO estimated that 216 million cases of malaria occurred worldwide 

and 81 percent was recorded percentage of African region. WHO facts reviewed that in 2010, 

there were 655,000 malaria deaths, 91 percent in the African region, and 86 percent were 

children under 5 years of age. WHO [2] reported that malaria affects 3.3 billion people and half 

of the world’s population in 106 countries, malaria is the third leading cause of death most 

especially for children under five years worldwide, after pneumonia and diarrheal disease. 

Thirty countries in sub-Saharan Africa account for 90 percent of global malaria deaths. 

Nigeria, Democratic Republic of Congo (DRC), Ethiopia, and Uganda account for nearly 50 

percent of the global malaria deaths. Malaria disease is the second leading cause of death from 

infectious diseases in Africa, after HIV/AIDS. Almost 1 out of 5 deaths of children under 5 in 

Africa are due to malaria. 

In this work, we propose a deterministic mathematical model of malaria dynamics which is a 

system of Fractional Differential Equations (FDEs) to investigate the behavior of drug therapy 

and treatment rate on effective reproduction number. We consider the probability of receiving 

treatment
p

 at the time of acquiring infection rather than the time of infection, as an 

alternative way of capturing the proportion of infections that are treated. The total time to 

move from being infectious to becoming susceptible again is 
)( q

 and hence the 

populations who receive drug therapy 
q

 do so at a rate of
)/(1  qp

. The populations 

that are infectious but remain untreated recovered naturally at 
  ./1 p

 However, as 

pointed out in [3, 4], an infection with malaria is a lifelong disease since the infected  
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individual harbored the virus in the blood for at least more than a year. With malaria, infected individuals return to the susceptible 

class on recovery because the disease confers no immunity against re-infection. Some fractions of susceptible proportion, latent 

proportion and symptomatic proportion are placed on a regular time to seek drug therapy at an equal rate of 3 . This is simply 

because 97 percent of Nigerians are infected with malaria virus from mosquitoes bite. And we assume that all infected individuals 

who recovered naturally at the rate   ,/1 p  symptomatic individuals that do not access drug therapy and treatment at a rate 

0/1 
 

and those who only take drug therapy may enter latent compartment and can be considered as latently infected individuals. 

We allow the reproduction rate of malaria virus from the mosquitoes bite to enter the model. Therefore, susceptible individuals are 

allowed to be either under drug therapy or latent with certain probabilities. 

 
2. Material and Methods 

2.1 Formulation of the Model Equations 

We formulate a mathematical model for malaria where the population is partitioned into six compartments of the Susceptible 

);(tS  Latent );(tL  Symptomatic );(tB  Infected );(tI Drug therapy );(tQ  while the sixth class is the Treatment ).(tT Patients 

may seek drug therapy when symptoms have manifested as well as at the infectious stage, and a person may be re-infected once 

susceptible again. The natural recovery period is assumed to be longer than the drug recovery period and the time to 

infectiousness. Probability of receiving treatment p is applied at the time of acquiring infection rather than during the infection. 

The classes susceptible, latent and
 
symptomatic seek drug therapy at a regular rate 3 . After the drug therapy, individual may 

move to either susceptible, latent or treatment class depending on whether the malaria viruses are cleared, hidden or persist. Time 

to seek treatment after drug therapy is not equal time to seek treatment during infection; becoming susceptible again is the 

combined effects of treatment,
 
drug therapy and

 
recovery rate

 
per infected individual. Reproduction rate of malaria virus and 

death removal rate are not equal. Disease induce death rate is applicable to only infected class. Those who recovered naturally
without drug and treatment moved into latent class. We assumed the malaria virus is not cleared in their body and the influx of 

malaria virus reproduction at a rate  , natural death is applicable to all the compartments at a rate 0 , disease induce death is 

applicable to only infectious class at a rate 1  and latent rate 0  relative to infection by symptomatic class. The population N is 

compartmentalized into the proportions of susceptible, latent, symptomatic, infected, drug therapy, and treatment class. 

 

2.2 Model Equations 

 

STQ
qdt

dS


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
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TQI
pdt

dT


















00

1

)(

11

)(

1


                 (6) 

 

.0)0(,0)0(,0)0(,0)0(,0)0(,0)0(  TQIBLS
  

1)()()()()()(  tTtQtItBtLtS                    (7) 

 

The model is defined in the subset   ,0D
 
of

 
,6


 
where

 
 

  1,1,,,,,0:,,,,, 6   TQIBLSTQIBLSTQIBLSD
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Table 1: Notation and definition of variables and parameter are represented as follows 
 

Symbols Description 

)(tS
 Susceptible individuals at time t  

)(tL
 Latent period at time t  

)(tB
 Symptomatic individuals at time t  

)(tI
 Latent period at time t  

)(tQ
 Drug therapy period at time t  

)(tT
 Treatment period at time t  

0
 

Period of susceptible 

1  
Period of latent 

2
 

Time of infectiousness 

3
 

Time to seek drug therapy 

4
 

Latent period after drug therapy 

0  
Time to seek treatment after drug therapy 

  Time to seek treatment 


 

Reproduction rate of malaria virus 

0  
Natural death rate 

1  
Death rate of Infected 

  Treatment rate 

0
 

Latent rate relative to infection by symptomatic class 


 Rate of recovery 

  Susceptible proportions that seek drug therapy at 3
 

  Latent proportions that seek drug therapy at 3
 

  Symptomatic proportions that seek drug therapy at 3
 

q
 Drug recovery period 

  Natural recovery period 

p
 Probability of treatment 

N  Population size 

)1( p
 

Rate of moving from infected to latent when there is no drug therapy and treatment 

 

3. Existence of Equilibrium points of the model 

In order to investigate the existence of equilibrium points for equation (1) to (6), we shall express (1) to (6) in form of (8) to (13) 

for ease of analysis as follows 

 

 SfffTfQfftS 543210)(                   (8) 

 

 LfffQfBfIfSftL 51098763 )()(                 (9) 

 

 BfffLftB 5121110)(                      (10) 

 

 IffBftI 141312)(                        (11) 

 

 QffffBLSftQ 5816115 )()(                   (12) 

 

 TffQfIftT 521613)(                     (13) 
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Where, 
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According to [5], equilibria are the points where the variables do not change with time. Thus, 

 

 0
dt

dT

dt

dQ

dt

dI

dt

dB

dt

dL

dt

dS
                   (15) 

 

Let, 

 

    TQIBLSTQIBLS ,,,,,,,,,, ,                  (16) 

 

be the arbitrary equilibrium point. Therefore, the system (8) to (13) becomes 

 

  0543210   SfffTfQff                   (17) 

 

  0)( 51098763   LfffQfBfIfSf               (18) 

 

  05121110   BfffLf                      (19) 

 

  0141312   IffBf                      (20) 

 

  0)( 5816115   QffffBLSf                 (21) 

 

  0521613   TffQfIf                     (22) 

 

From equations (17), (19), (20) and (22), we have: 
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From (22) and (24), we obtain: 
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From (17) and (25), we obtain: 
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Substituting (23), (24), (25) and (26) into (18) and simplifying, we have: 
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Substituting (23), (25) and (26) into (21) and simplifying, we have: 
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In order to analyze the equilibria of the model, the expression in (27) and (28) are cumbersome therefore; as stated in [6], we 

examine the existence of equilibria in the neighbourhood of linear system of simultaneous equations given in (29) to (30) as: 
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In order to make our argument valid we deduce that equilibria solutions exist and are stable approximately [7], i.e. 

 

)()()( thtctn                          (37) 

 

)()()( tetatk                           (38) 

 

Substituting (37) to (38) into (29) to (30) and simplifying, we obtain a condition for which (29) and (30) are in the form: 

 

  0)()(  tgtbB                         (39) 

 

and so this implies that either, 

 

0B                           (40) 

 

Or 

 

  0)()(  tgtb                          (41) 

 

Therefore, as in [8] from equation (39), we have existence of two different equilibria; one satisfying equation (40) where all the 

infected compartments are zero, while the other satisfying (41). Thus, substituting (40) into (19) and (20), we have: 

 

0  IBL                          (42) 

 

3.1 Disease Free Equilibrium (DFE) points 

Let, 

 

   0000000 ,,,,,,,,,, TQIBLSTQIBLSE                   (43) 

 

Substituting (42) into (17) to (22) give: 

 

  0543210   SfffTfQff                  (44) 

 

083   QfSf                         (45) 

 

 
  05816115   QffffSf                    (46) 

 

  05216   TffQf                       (47) 

 

Solving (44) to (47), we have that a DFE exist at the point 

 

   210

000000 ,,0,0,0,,,,,, WWWTQIBLS                    (48) 

 

Where, 

 
































































































q

q

q
SW

1

11
)(

1

11111

1

1

1111

0

0

3

04003

3

0400

0      (49) 
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
































































q

q

QW

1

11
)(

1

11111

1

1

1

0

0

3

04003

0

1














      (50) 

 

0

0

0

3

04003

0

0

2 11

1

11
)(

1

11111

1

1

11



































































































































q

q

TW      (51) 

Equation (48) is the DFE points. 

 

3.2 Effective Reproduction Number, effR
 

For SEIR models, the rate of appearance of new infections is given by the new infection terms in the latent compartment [9, 10, 11]. 

From the equations (1) to (7) of the model, we have the vector )(xF of the rates of new infections in compartments )(tL , )(tB  

and )(tI given as: 

  










































0

0

11

)1(

11

)(
400

QBI
p

S

xF





                (52) 

 

Also, the remaining transfer terms in compartments BL,  and I is given by equation (53). 

 

          (53)  

 

The matrix of partial derivatives of )(xF at DFE State,  0000 ,,0,0,0, TQSEx 
 
is given by 
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























000

000

)1(

11
0

)(

00

0

0

Q
p

Q

EFx


                  (54) 

 


































































q

q

Q

1

11
)(

1

11111

1

1

1

0

0

3

04003

0














       (55) 

 

And the matrix of partial derivatives of )(xV at DFE State  0000 ,,0,0,0, TQSEx   is 

 
















































102

0231

013

0

111
0

0
111

00
11

)(























p

EVx          (56) 

 

It follows that the basic reproduction number 0R  is given by equation (57). 

 

 1 VFR xeff 
                        

(57) 

 















































































10023013

21

0

023013

10

0

111111
)1(

)1)(1(

1111

)1(







































p
p

QQ
Reff

     (58) 

 

4. Result and Discussion 

4.1 Local Stability of Disease Free Equilibrium (DFE), 0E
 

Theorem 4.1. The Disease-Free Equilibrium of the model system (1) to (6) is locally asymptotically stable if 1effR  and 

unstable if 1effR  

 

Proof: 

We shall first compute the Jacobian matrix for the DFEs using equations (1) to (6). The Jacobian matrix for the disease-free state 

0EJ is given as 

 


































































































































































00

040333

102

0231

4

0

0

0

0130

030

1111
000

0
1111

0

00
111

00

000
111

0

0
1

)1(

111

11
000

11

0



















































p

q

p

p

QQ

q

J E

        (59)
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For ease of analysis, we perform the following operations on equation (59) and obtain (60). 

 





























191817

16151413

1211

109

87654

321

000

00

0000

0000

0

000

0

kkk

kkkk

kk

kk

kkkkk

kkk

J E

               

(60) 

 

Where,  

 































































































































0

18

0

18

17

040

16

3

15

3

14

3

13

10

12

2

11

032

10

1

9

4

8
0

247

0

0
236

013

225

0

4163152

030

111

11
,

1

,
1

,
1111

,,,

,
11

,
1

,
11

,
1

,
1

,
)1(

,,
11

,
1

,
1

,
1

,
11



















































kk

p
k

q
kkkk

p
kkkk

k
p

Q
Ak

Q
AkAk

kAk
q

AkAk

        (61)  

 

Using Gaussian elimination row operation on the equation (60), we obtain the following 

 





















































66

5655

464544

36353433

2625242322

161511

00000

0000

000

00

0

000

A

AA

AAA

AAAA

AAAAA

AAA

M

           

(62)

 

 

Where, 

 









































55

756655
66

44

146544
56

44

145044
55

33

1136
46

33

1135
45

33

11341233
44

5

926
36

5

925
35

5

97
34

5

96105
33

1

43
26

1

4281
25

,,,

,,,,

,,,,

A

BABA
A

A

BABA
A

A

BABA
A

A

kA
A

A

kA
A

A

kAkA
A

k

kA
A

k

kA
A

k

kk
A

k

kkkk
A

k

kk
A

k

kkkk
A

          (63) 

 

To simplify the notations, we let 

 



















































1

133
10

5

1426510
9

1

132161
8

44

17451844
7

44

17461944
6

33

336933
5

5

147
4

5

146155
3

5

142558
2

33

334433
1

33

335233
0

,

,,,

,,,

,,,

k

kk
B

k

kAkB
B

k

kkkk
B

A

kAkA
B

A

kAkA
B

A

BABA
B

k

kk
B

k

kkkk
B

k

kAkB
B

A

BABA
B

A

BABA
B

         (64) 

 

http://www.mathsjournal.com/


 

~10~ 

International Journal of Statistics and Applied Mathematics http://www.mathsjournal.com 
 

Therefore, the corresponding characteristic equation to M as defined by equation (62) yield: 

 

       0665544332211   AAAAAA             (65) 

 

Where, 

 


























 








 











 










 































.,

,,

,
11

,
11

55

655756
666

44

044145
555

33

12331134
444

5

10596
333

013

5222

030

1111

A

BABA
A

A

BABA
A

A

kAkA
A

k

kkkk
A

kAkA




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















       

 

(66)
 

 

This means that all the eigenvalues of the characteristic equation (65) have negative real parts and, therefore, 0E is stable. This 

implies that, 
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0
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















































p
p

QQ       (67) 

1effR                           (68) 

 

4.2 Global Stability of Disease Free Equilibrium (DFE), 0E
 

Theorem 4.2. The DFE, 0E  of the model system is globally asymptotically stable if .1effR
 

Proof.  

We start by considering the Lyapunov-Laselle function [12]. 

 

 
12

10

128

,,,,,
k

HIk

k

HXB

k

GFL
TQIBLSV 

               (69) 

 

Where, 

 

 
  








511220

110

)1(

),1(,)1(1,)1(

kkpH

kXGQF





             
(70) 

 

Differentiating (69), we have: 
 

      IkBk
k

Hk
BkLk

k

HX
LkQkBkIkSk

k

GF

dt

dV
1211

12

10
109

12

58674

8



      

(71) 

 

Since 
 

00000 ,,,, QQIIBBLLSS   & 0TT                 (72) 

 

Equation (70) becomes 
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Then, clearly 0
dt

dV

                      

(75) 

 

if 1effR                           (76) 

 

Hence, the DFE is globally asymptotically stable. 

 

4.3 Graphical Representation of Effective Reproduction Number with Control Variables 

In this section, we compute numerical simulations and vary the control parameters with the effective reproduction number, .effR

The control parameters are drug therapy and treatment rate where k  is the different proportion of each control parameters. 

 

 
 

Fig 1: Model flowchart 
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Fig 2: Effect of time to seek drug therapy on effective reproduction number. 

 

Figure 2, shows that, as time to seek drug therapy increases the effective reproduction number decreases. This implies that placing 

individuals on a regular anti-malaria therapy where malaria disease is endemic will reduce the numbers of malaria patients in the 

hospitals. The availability of anti-malaria and time to seek the therapy is a practical key in controlling malaria disease in sub-

Sahara African regions that are endemic with malaria. 

  

 
 

Fig 3: Effect of time to seek treatment on effective reproduction number. 

 

Figure 3 illustrates the effect of time to seek treatment, as the treatment rate increases the effective reproduction number decreases 

with time. Having access to malaria treatment facilities in the sub-Sahara African communities where malaria is an endemic 

disease will drastically reduce malaria persistence. 

 

5. Conclusion 

We observed from all the analysis that the local and global stability of Disease Free Equilibrium (DFE) is asymptotically stable if 

1effR  and ,1effR respectively. The implication here is, once the malaria disease breaks out in a population it can die out 

with time. Since the effective reproduction number is either less than or equal to one for local and global stability respectively. 

The numerical simulation as demonstrated by figures two and three showed that if the time to seek ant-malaria drug therapy is 

regular, availability of drug therapy, time to seek treatment and accessibility of malaria treatment facility are put together in the 

community, this will bring malaria disease under control. We also observed from all the graphs that the effective reproduction 

number is less than one which implies that the malaria disease will not persist in the population if all the control measures are 

being implemented into national health policy. 

Government at all levels should ensure that anti-malaria drug therapies and treatment facilities are always accessible to people; 

and individuals should also be sensitized to avoid mosquitoes bite. 
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