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Abstract: An S−L−B−I−Q−T epidemic mathematical model incorporating drug therapy and treatment is investigated for malaria disease. We
obtained the Disease Free Equilibrium (DFE) points and compute the basic reproduction number (R0). The local and global
stability of the Disease Free Equilibrium was analyzed using Jacobian matrix stability techniques and Lyapunov function
respectively. The local and global stability was asymptotically stable if R0 < 1 and R0 ≤ 1 respectively. Sensitivity analysis of R0

for drug therapy and treatment showed that R0 is strictly a decreasing function of σ3, θ, ν, τ and p. The numerical simulation of
R0 and control parameters of the model were presented graphically. The findings of this study strongly suggest a combination
of effective drug therapy and treatment as a crucial strategy to control the malaria disease.
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1. Introduction

Malaria disease is caused by Plasmodium parasites. The parasites are spread to people through the bites of an infected

female Anopheles mosquito known as malaria vector. In [1] 219 million cases of malaria were estimated in 89 countries by

World Health Organization (WHO). The estimated number of malaria deaths stood at 435,000 in 2017 as given by [1] that

African region carries a disproportionately high share of the global malaria burden. Their statistics showed that in 2017, the

region was placed on 92 percent of malaria cases and 93 percent of malaria deaths. In 2010, WHO estimated that 216

million cases of malaria occurred worldwide and 81 percent was recorded percentage of African region. WHO facts reviewed

that in 2010, there were 655,000 malaria deaths, 91 percent in the African region, and 86 percent were children under 5

years of age. WHO [2] reported that malaria affects 3.3 billion people and half of the world’s population in 106 countries,

malaria is the third leading cause of death most especially for children under five years worldwide, after pneumonia and

diarrheal disease. Thirty countries in sub-Saharan Africa account for 90 percent of global malaria deaths. Nigeria,

Democratic Republic of Congo (DRC), Ethiopia, and Uganda account for nearly 50 percent of the global malaria deaths.

Malaria disease is the second leading cause of death from infectious diseases in Africa, after HIV/AIDS. Almost 1 out of 5

deaths of children under 5 in Africa are due to malaria.

In [3] the authors proposed a mathematical model and compared their model to an alternate version of the SLBI model. In

their formulation, the probability of receiving treatmentpis applied at the time of acquiring infection rather than the time of
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infection, as an alternative way of capturing the proportion of infections that are treated. They also assumed that since there

is no treatment compartment explicitly, the total time to move from being infectious to becoming susceptible again is (q +τ )

and hence the population who receive drug therapy with probability q do so at a rate of p × 1/(q + τ ). The populations that

are infectious but remain untreated recovered naturally at the natural recovery rate ((1 − p) /δ). However, as pointed out by

World Health Organization ([4, 5]) an infection with malaria is a lifelong disease since the infected individual harbored the

virus in the blood for at least more than a year. With malaria, infected individuals return to the susceptible class on recovery

because the disease confers no immunity against re-infection.

In our paper, we incorporate compartments of drug therapy and treatment where fractions of susceptible proportion, latent

proportion and symptomatic proportion are placed on a regular time to seek drug therapy at an equal rate of σ3. This is

simply because 97 percent of Nigerians are infected with malaria virus from mosquitoes bite. And we assume that all infected

individuals who recovered naturally at the rate ((1 − p) /δ), symptomatic individuals that do not access drug therapy and

treatment at a rate 1/α0 and those who only take drug therapy may enter latent compartment and can be considered as

latently infected individuals. Our model is a holistic approach to real life situation in that we incorporate demography and

malaria caused death. We also allow the reproduction rate of malaria virus from the mosquitoes to enter the model. Hence,

susceptible individuals are allowed to be either under drug therapy or latent with certain probabilities.

The organization of this paper is as follows: The model equations are formulated in section 2. Section 3 is concerned with

deriving the basic reproduction number and sensitivity analysis on basic reproduction number. Local and global stability

analysis of disease free equilibrium and numerical simulation were obtained in section 4. The discussion of the work is

presented in section 5. Recommendations and suggestion for further studies are presented in section 6 in the form of

concluding remarks.

2. Formulation of the Model Equations

2.1. The Existing Model

We begin our model formulation by introducing the model of [3]; we first present the parameters and assumptions of the

existing model.

2.2. Assumptions of the Existing Model

The following are the assumptions of the existing model by [3]

(i). Patients may seek drug therapy when symptoms have manifested as well as at the infectious stage, and a person may

be re-infected once susceptible again.

(ii). The natural recovery period is assumed to be longer than the drug recovery period and the time to infectiousness.

(iii). Natural recovery is only possible once the disease is at the infectious stage and not any earlier.

(iv). Probability of receiving treatment p is applied at the time of acquiring infection rather than during the infection, and

those who do not receive drug therapy recovered naturally.

(v). Birth, death, super-infection and the development of immunity through repeated infections are ignored.

2.3. Variables and Parameters of the Existing Model

Table 1 shows definition of variables and parameters of the existing model.
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s Description

S(t) Susceptible individuals at time t

L(t) Latent period at time t

B(t) Symptomatic individuals at time t

I(t) Infected period at time t

σ1 Period of latent

σ2 Time of infectiousness

τ Time to seek treatment

q Drug recovery period

δ Natural recovery period

p Probability of treatment

λ Force of infection

N Population size

t Time

Table 1.

The following is a flow diagram of the existing model.

Figure 1. Flow diagram of malaria for the existing model

2.4. The Equations of the Existing Model

Using the above assumptions, parameters and flow diagram, [3] derived the following model equations.

dt = −λ(t)S +(1 − p)

dS

δI +p

(q + τ )(B + I) (1)



dL

dt = λ(t)S −
1σ1L (2) dt =

1σ1L −(1 − p)
dB

dt =(1 − p)

σ2B −p

(q + τ )B (3)

σ2B −(1 − p)
dI

δI −p

(q + τ )I (4)

2.5. The Extended Model

We shall use the following assumptions and flow diagram to derive the extended model used in this work.
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2.6. Assumptions of the Extended Model

In addition to the assumptions by [3] we make the following assumptions:

(i). The population N is compartmentalized into the proportions of susceptible individuals S(t), proportions of latent

individuals L(t), proportions of symptomatic individuals B(t), proportions of infected individuals I(t), proportions of

drug therapy class Q(t), and proportions of treatment class T(t).

(ii). The classes S(t), L(t) and B(t) seek drug therapy at a regular rate σ3.

(iii). After the drug therapy, individual may move to either susceptible, latent or treatment class depending on

whether the malaria viruses are cleared, hidden or persist.

(iv). Time to seek treatment after drug therapy is not equal time to seek treatment during infection (v). Becoming

susceptible again is the combined effects of treatment drug therapy and recovery rate per infected individual. (vi).

Reproduction rate of malaria virus and death removal rate are not equal.

(vii). Disease induce death rate is applicable to only infected class I(t).

(viii). We ignored natural recovery and assumed that drug therapy alone is not sufficient enough to cure malaria.

(ix). Probability of receiving treatment p is applied during the infection, and those who recovered naturally δ

without drug and treatment moved into L(t), we assumed the malaria virus is not cleared in their body.

2.7. Variables and Parameters of the Extended Model

Table 2 shows definition of variables and parameters of the extended model

s Description

Q(t) Drug therapy period at time t

T(t) Treatment period at time t

σ0 Period of susceptible

σ3 Time to seek drug therapy

σ4 Latent period after drug therapy

τ0 Time to seek treatment after drug therapy



β Reproduction rate of malaria virus

µ0 Natural death rate

µ1 Death rate of Infected

α Treatment rate

α0 Latent rate relative to infection by symptomatic class

γ Rate of recovery

ε Susceptible proportions that seek drug therapy at σ3

θ Latent proportions that seek drug therapy at σ3

ν Symptomatic proportions that seek drug therapy at σ3

δ(1 −
p)

Rate of moving from infected to latent when there is no drug therapy and treatment

Table 2.

The flow diagram for the existing model is amended to obtain the flow diagram for the extended model as follows.
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Figure 2. Flow diagram of malaria for the extended model

2.8. Equations of the Extended Model

The proportions of drug therapy Q(t) and treatment class T(t) are incorporated into the extended model explicitly as shown in

equations (9) to (11). In the expanded model, we consider the influx of malaria virus reproduction at a rate β, equal natural

death which is applicable to all the compartments at a rate µ0, disease induce death only to infectious class at a rate µ1 and



latent rate α0 relative to infection by symptomatic class B(t). Also, time to seek drug therapy σ3, treatment rate α, and

recovery rate γ are incorporated in the model equations. Based on the above assumptions, Variables, parameters and flow

diagram, we extend the model by [3] as follows

dS

dt =
1
β+
1
qQ +1

(α + γ)T −

dL
1 − ε

σ0+
εσ3+

1µ0S (5)

dt =1 − ε

δ(1 − p)I +
1α0B +

1σ4Q −
θσ3+1

− θ

σ1+
1µ0L (6)

dB σ0S +

1

dt =1 − θ

σ3+1 − ν

σ2+
1µ0B (7)

dI

σ1L −
ν

dt =1 − ν

σ2B −

(τ + p)+1

1
(µ0 + µ1)

I (8)

dt =
1σ3(εS + θL + νB) −

1
q+
1τ0+

1σ4+
1µ0Q (9)

dQ

dT

dt =1

(τ + p)I +
1τ0Q −1

(α + γ)+
1µ0T (10)

S(0) ≥ 0, L(0) ≥ 0, B(0) ≥ 0, I(0) ≥ 0, Q(0) ≥ 0, T(0) ≥ 0. Because the extended model is in terms of proportions, S(t) + L(t) +

B(t) + I(t) + Q(t) + T(t) = 1 (11)

The model is defined in the subset D × [0, ∞) of 6+, where

D =(S, L, B, I, Q, T) ∈ 6
+ : 0 ≤ S, L, B, I, Q, T ≤ 1, S + L + B + I + Q + T ≤ 1
Mathematical Approach for Modelling Malaria Disease in the Presence of Drug Therapy and Treatment

3. The Basic Reproduction Number, R0

We now calculate the disease-free equilibrium state of the extended model. We begin this by setting the left hand sides of

equations (5) to (11) to zero and get the disease-free equilibrium state as follows. The disease-free equilibrium state, E0 =

(S0, 0, 0, 0, Q0, T0). Where,

S0 =
1

q +1τ0+1σ4+1µ0
1−ε +

εσ
3+

1µ
0
1
q +

1τ
0+

1σ
4+

1µ
0σ3 1

σ3 (12)

ε −1
β

Q0 =1
(α+γ)τ0

α+γ +
1µ
0−1q 1

ε (13)

1−ε +
εσ
3+

1µ
0
1
q +

1τ
0+

1σ
4+

1µ
0σ3

1

ε −1



β 1



1 

(α+γ)τ0

α+γ +
1µ
0−1q

1


 

τ0  1−ε+
εσ
3+

1µ0 1
1
q+

1τ
0+

1σ
4+

1µ0
σ3



ε −
1

β
α+γ+

1µ0

− 1q

(α+γ)τ0 1

T0 =
α+γ +1µ0(14) 1

Remark 3.1. For SEIR models, the rate of appearance of new infections is given by the new infection terms in the latent

compartment [6–8].

From the equations (5) to (11) of the expanded model, we have the following:

The vector F(x) of the rates of new infections in compartments L(t), B(t) and I(t) is given by

F(x) =



1−ε

σ0S +

δ(1−p)I +1α0B +1σ4 1

0

0

Q




(15)

Also, the remaining transfer terms in compartments L, B and Iis given by equation (16).


σ3+1−θ


V (x) =


θ

σ1+1µ0 σ3+1−ν

L


(16)

−1−θ

σ1L +

ν

σ2+1µ0
B

−1−ν

σ2B +
(τ+p) +1

1

(µ0+µ1)

I

The matrix of partial derivatives of F(x) at DFE State, ¯x = E0 = (S0, 0, 0, 0, Q0, T0) is given by

Fx(E0) =




0
1α0Q01

δ(1−p)Q0

0 0 0

0 0 0



(17)

Q0 =1
(18)

1−ε +
εσ
3+

1µ
0
1
q +

1τ
0+

1σ
4+

1µ
0σ3

1

ε −1

β (α+γ)τ0 α+γ +
1µ
0−1q 1

And the matrix of partial derivatives of V (x)at DFE State ¯x =
E0 = (S0, 0, 0, 0, Q0, T0) is


θσ3+1−θ

σ1+1µ00 0




(19)

Vx(E0) = −1−θ σ3+1−ν
ν
σ1

σ2+1µ00
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It follows that the basic reproduction number R0 is given by equation (20).



R0 = ρFxV−1(20)

R0 =(1 − θ)Q0 +(1 − θ)(1 − ν)Q0

α0σ1

θ

σ3+1−θ

σ1+1µ0
ν

σ3+1−ν
σ2+1µ0 δ(1 − p)σ1σ2

θ

σ3+1−θ

σ1+1µ0

ν

σ3+1−ν

σ2+1µ0

τ+p +1
1

µ0+µ1
(21)

Theorem 3.2. R0 is a strictly decreasing function of σ3, θ, τ, ν, p ∈ (0, 1). Proof. The partial

derivative of R0with respect to σ3, θ, τ, νand pis given by (22)-(26).




σ3

  (1−θ)Q0θ
σ
2+

1µ
0σ

2
3+(1−θ)Q0ν

  

σ
1+

1µ
0
2νσ

3+
1−ν θσ

3+
1−θ

θσ
3+

1−θ

σ
2+

1µ
0
2σ23

α0σ1

α0σ1
σ
1+

1µ
0
νσ
3+

1−ν

+(1−θ)(1−ν)Q0θ
σ
1+

1µ
0
2νσ

3+
1−ν

δ(1−p)σ1σ2

θσ
3+

1−θ

σ
2+

1µ
0 1

τ+p +
1

µ
0
+µ1

σ23

+(1−θ)(1−ν)Q0ν
θσ
3+

1−θ σ
2+

1µ
0
21

∂R0

∂σ3= − δ(1−p)σ1σ2
σ
1+

1µ
0
νσ
3+

1−ν
τ+p +

1

µ
0
+µ1

σ23
 < 0 (22)

(1−θ)Q
0 θσ3+

1−θ
σ
2+

1µ
0+ 

α0σ1
σ
1+

1µ
0
νσ
3+

1−ν

(1−θ)(1−ν)Q0
θσ
3+

1−θ



δ(1−p)σ1σ2


σ
1+

1µ
0
νσ
3+

1−ν

σ
2+

1µ
0 1

τ+p +
1

µ
0
+µ1





θ

Q

0

σ
2+

1µ
0−(1−θ)Q0

1σ
3−

1σ1 



θσ
3+

1−θ σ
1+

1µ
0
2νσ

3+
1−ν

α0σ1

σ
1+

1µ
0
νσ
3+

1−ν α0σ1
θσ
3+

1−θ σ
2+

1µ0

+(1−ν)Q0 θσ3+
1−θ

σ
1+

1µ
0
νσ
3+

1−ν

δ(1−p)σ1σ2
σ
2+

1µ
0 1

τ+p +
1

−(1−θ)(1−ν)Q0
1σ
3−

1σ1

µ
0
+µ1

σ
1+

1µ
0
2νσ

3+
1−ν

∂R0
∂θ = − δ(1−p)σ1σ2

θσ
3+

1−θ

σ
2+

1µ
0 1

τ+p +
1

µ
0
+µ1



< 0 (23)

(1−θ)Q
0 θσ3+

1−θ
σ
2+

1µ
0+ 

α0σ1
σ
1+

1µ
0
νσ
3+

1−ν

(1−θ)(1−ν)Q0

θσ
3+

1−θ

σ
1+

1µ
0
νσ
3+

1−ν

δ(1−p)σ1σ2
σ
2+

1µ
0 1

τ+p +
1

µ
0
+µ1

∂τ = −τQ0 ((1 − θ)(1 − ν))
∂R0

 


(1−θ)Q

0 θσ3+
1−θ    

< 0 (24)

α0σ1

σ
1+

1µ
0
νσ
3+

1−ν

σ
2+

1µ0

+(1−θ)(1−ν)Q0 θσ3+
1−θ

δ(1−p)σ1σ2
σ
1+

1µ
0
νσ
3+

1−ν

σ
2+

1µ
0 1

τ+p +
1

σ3+1−θ
σ1+1µ0 σ3+1−ν

µ
0
+µ1

2(τ + p)2



 δ(1 − p)σ1σ2
θ

ν

σ2+1µ0
τ+p +1
1

µ0+µ1


ν




−(1−θ)Q0 θσ3+
1−θ

1σ
3−

1σ
1Q0

σ
2+

1µ
02+









α0σ1

σ
1+

1µ
0
νσ
3+

1−ν

(1−θ)Q0
θσ
3+

1−θ

σ
1+

1µ
0
νσ
3+

1−ν

σ
2+

1µ
0 1

δ(1−p)σ1σ2
1σ
3−

1σ1 τ+p +
1 µ

0
+µ1

−(1−θ)(1−ν)Q0 θσ3+
1−θ

σ
2+

1µ
0
21

∂R0
∂ν = − 

δ(1−p)σ1σ2

σ
1+

1µ
0
νσ
3+

1−ν

τ+p +
1 µ

0
+µ1 

< 0 (25)

(1−θ)Q
0 θσ3+

1−θ
σ
2+

1µ
0+ 

α0σ1
σ
1+

1µ
0
νσ
3+

1−ν

(1−θ)(1−ν)Q0
θσ
3+

1−θ


 δ(1−p)σ1σ2

σ
1+

1µ
0
νσ
3+

1−ν

σ
2+

1µ
0 1

τ+p +
1

µ
0
+µ1




(1−θ)(1−ν)Q
0


p

δ(1−p)2σ1σ2
θσ
3+

1−θ

σ
1+

1µ
0
νσ
3+

1−ν

σ
2+

1µ
0 1

τ+p +
1

µ
0
+µ1

+(1−θ)(1−ν)Q0
θσ
3+

1−θ


2(τ+p)2



∂R0

∂p = −
δ(1−p)σ1σ2
σ
1+

1µ
0
νσ
3+

1−ν

σ
2+

1µ
0 1

τ+p +
1

µ
0
+µ1

(1−θ)Q0

< 0 (26)

σ3+1−θ

σ1+1µ0
σ3+1−ν

σ1σ2 θ ν σ2+1µ0
+(1−θ)(1−ν)Q0 θσ3+

1−θ

δ(1−p)σ1σ2
σ
1+

1µ
0
νσ
3+

1−ν

σ
2+

1µ
0 1

τ+p +
1

µ
0
+µ1

Therefore, R0 is a strictly decreasing function of σ3, θ, τ, ν and p.
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4. Result

4.1. Local Stability Analysis of the Disease-Free Equilibrium (DFE), E0

Theorem 4.1. The Disease-Free Equilibrium of the model system (5)-(10) is locally asymptotically stable if R0 < 1 and

unstable if R0 > 1.

Proof. We shall first compute the Jacobian matrix for the DFEs using equations (5) - (10). The Jacobian matrix for the

disease-free state JE0is given as

 
−

σ0+εσ3+1µ0 1−ε 0 0 0 1
q1 α+γ




(27)

σ3+1−θ

Q0

Q0

1−ε

σ0−
θ

σ1+1µ0 α0 δ(1−p)
1

σ40

01−θ σ3+1−ν
0 0 0



σ1−
ν

σ2+1µ0

JE0=

0 0 1−ν σ2−
τ+p +1
1
µ0+µ1

0 0

ε
σ3

θ
σ3

ν

σ30 −
q +1τ0+1σ4+1µ0 1 0

0 0 0 1 τ+p 1

τ0−
α+γ +1µ0 1

For ease of analysis, we perform the following operations on equation (27) and obtain (28).

JE0=

Where,




k1 0 0 0 k2 k3
k4 k5 k6 k7 k8 0 0 k9 k10 0 0 0 0 0 k11 k12 0 0

k13 k14 k15 0 k16 0 0 0 0 k17 k18 k19




(28)



k1 = A11 = −

k5 = A22 = −
σ0+εσ3+1µ0
1−ε

σ3+θσ1+1µ0 1−θ

, k2 = A15 =1q, k3 = A16 =1

α+γ, k4 =1−ε

σ0,
, k6 = A23 =Q0

α0, k7 = A24 =Q0

δ(1−p), k8 =1σ4,
k9 =1−θ

σ1, k10 = −

1−ν

σ2+νσ3+1µ0

, k11 =1−ν

σ2, k12 = −

τ+p +1

1
µ0+µ1




(29) ,

k13 =εσ3, k14 =θσ3, k15 =νσ3,
k16 = −

q +1τ0+1σ4+1µ0 1 , k17 =1 τ+p,

k18 =1τ0, k18 = −
α+γ +1µ0 1

Using Gaussian elimination row operation on the equation
(28), we obtain the following




A11 − λ 0 0 0 A15A16

0 A22 − λ A23A24A25A26




(30)

M =

Where,
0 0 A33 − λ A34A35A36 0 0 0 A44 − λ A45A46 0 0 0 0

A55 − λ A56 0 0 0 0 0 A66 − λ



k1, A26 = −k3k4

k1, A33 =k5k10−k6k9

A25 =k1k8−k2k4

A35 = −A25k9

k5, A36 = −A26k9
k5, A34 = −k7k9 k5,




(31)
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k5, A44 =A33k12−A34k11
A33, A45 = −A35k11
A33,
A46 = −A36k11
A33, A55 =A44B0−A45B1
A44, A56 =A44B5−A46B1

A44,
A66 =A55B6−A56B7
A55
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To simplify the notations, we let

B0 =A33B2−A35B3
A33, B1 =A33B4−A34B3

A33, B2 =B8k5−A25k14
k5,
B3 =k5k15−k6k14
k5, B4 = −k7−k14

k5, B5 =A33B9−A36B3
A33,
B6 =A44k19−A46k17
A44, B7 =A44k18−A45k17

A44, B8 =k1k16−k2k13

k1,
B9 = −B10k5−A26k14
k5, B10 = −k3k13

k1

Therefore, the corresponding characteristic equation to Mas
defined by equation (30) yield:




(32)

Where,
(A11 − λ) (A22 − λ) (A33 − λ) (A44 − λ) (A55 − λ) (A66 − λ) = 0 (33)



λ1 = A11 = k1 = −
σ0+εσ3+1µ0 1−ε , λ2 = A22 = k5 =

− 1−θ

σ3+θσ1+1µ0

,

λ3 = A33 = −
k6k9−k5k10 k5 , λ4 = A44 = −

A34k11−A33k12 A33 , 
(34)

λ5 = A55 = −
A45B1−A44B0

A44 , λ6 = A66 = −
A56B7−A55B6 A55 .

This means that all the eigenvalues of the characteristic equation (33) have negative real parts and, therefore, E0 is stable.

This implies that,

(1 − θ)Q0 +(1 − θ)(1 − ν)Q0

σ3+1−θ

σ1+1µ0

σ3+1−ν

< 1 (35)



ν

σ2+1µ0
σ3+1−θ σ1+1µ0 σ3+1−ν

α0σ1
θ

δ(1 − p)σ1σ2
θ
ν

σ2+1µ0
τ+p +1
1

µ0+µ1 R0 < 1 (36)

4.2. Global Stability Analysis of the Disease-Free Equilibrium (DFE), E0 Theorem 4.2.

The DFE, E0 of the model system is globally asymptotically stable if R0 ≤ 1. Proof. We start by considering the

Lyapunov-Laselle function [9].

k8+HXB

V (S, L, B, I, Q, T) = GF L

Where,

k12+HIk10

k12(37)



(38)

Differentiating (37) gives:
F = (1 − θ)Q0, G = [1 + (1 − ν)] , X = (1 − k11), H = [α0 + δ(1 −

p)σ2k12] σ1k5

dV

k8[k4S + (k7I + k6B + k8) Q

+ k5L] + HX

k12[k9L + k10B] + Hk10
k12[k11B + k12I] (39)

Since

S ≤ S0, L ≤ L0, B ≤ B0, I ≤ I0, Q ≤ Q0 and T ≤ T0 (40)

dt =GF

Equation (39) becomes dV

k4S0 + k8Q0


(1−θ)Q

0 θσ3+
1−θ




(41)

dt ≤

α0σ1

σ
1+

1µ
0
νσ
3+

1−ν

σ
2+

1µ0

k8
+(1−θ)(1−ν)Q0 θσ3+

1−θ σ
1+

1µ
0
νσ
3+

1−ν − 1

δ(1−p)σ1σ2
σ
2+

1µ
0 1

τ+p +
1

µ
0
+µ1
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[R0 − 1] (42)
=

Then, clearly

dV

dt ≤ 0 (43)

if

R0 ≤ 1 (44)
k4S0 + k8Q0 k8



Hence, the DFE is globally asymptotically stable.

4.3. Graphical Representation of Basic Reproduction Number with Control Param eters

We simulated the control parameters in the model with basic reproduction number. The control parameters are drug therapy

and treatment rate. Where k is the different proportion of each control parameters.

Figure 3. Effect of time to seek drug therapy

Figure 4. Effect of latent proportions to seek drug therapy
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Figure 5. Effect of time to seek treatment

Figure 6. Symptomatic proportions that seek drug therapy

Figure 7. Effect of Probability of treatment

5. Discussion

We extended and analyzed a mathematical model of Malaria disease considering drug therapy and treatment as control

measures. In the model analysis, we obtained R0 and it serves as a threshold parameter that predicts whether the Malaria

disease can spread in a susceptible population or not. The R0 is to be used as a means of guide to the public health

agencies on the amount of effort needed to control or eradicate the Malaria disease. From equations (36) and (44) the local

and
Mathematical Approach for Modelling Malaria Disease in the Presence of Drug Therapy and Treatment

global stability of DFE is asymptotically stable if R0 < 1 and if R0 ≤ 1 respectively. This implies that Malaria disease can die



out with time. The R0 was analytically evaluated for its sensitivity of time to seek drug therapy by latent proportion, time to

seek treatment, symptomatic proportion that seek drug therapy and Probability of treatment by infected individuals while

figure 3, 4, 5, 6 and 7 are the graphical presentation of R0 against σ3, θ, τ, ν and p when the control parameters were each

estimated at 25, 50 and 75 percent respectively. Clearly, the analytical sensitivity given by equation (22) to (26) and

numerical simulation proved that R0 is a decreasing function of drug therapy and treatment. It was observed from all the

graphs that R0 is less than one (i.e. R0 < 1). This intuitive reasoning agrees with equation (22) to (26) which gives possibility

to put Malaria disease under control.
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